Pneumologie 2011; 65(5): 283-292
DOI: 10.1055/s-0030-1256123
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Neuronale Kontrolle bei chronisch entzündlichen und obstruktiven Lungenerkrankungen wie Asthma bronchiale und COPD

Innervation of the Airways in Asthma Bronchiale and Chronic Obstructive Pulmonary Disease (COPD)Q.  T.  Dinh1 , 2 , H.  Suhling1 , A.  Fischer3 , A.  Braun4 , T.  Welte1
  • 1Zentrum für Innere Medizin, Medizinische Hochschule Hannover (MHH), Klinik für Pneumologie, Hannover (Leiter: Prof. Dr. T. Welte)
  • 2Charité Zentrum 12 für Innere Medizin und Dermatologie, Medizinische Klinik mit Schwerpunkt Psychosomatik, Charité – Universitätsmedizin Berlin, Freie Universität Berlin & Humboldt-Universität zu Berlin, Berlin (Leiter: Prof. Dr. B. F. Klapp)
  • 3Zentrum für Pädiatrie, Klinische Forschergruppe Allergologie, Charité – Universitätsmedizin Berlin, Freie Universität Berlin & Humboldt-Universität zu Berlin, Berlin (Leiter: Prof. Dr. A. Fischer)
  • 4Fraunhofer Institut für Toxikologie und Experimentelle Medizin (ITEM), Abteilung Immunologie, Allergologie und Immuntoxikologie, Hannover (Leiter: Prof. Dr. N. Krug)
Further Information

Publication History

eingereicht 27. 10. 2010

akzeptiert nach Revision 8. 12. 2010

Publication Date:
26 January 2011 (online)

Zusammenfassung

Chronisch entzündliche Atemwegserkrankungen wie Asthma bronchiale und die chronisch obstruktive Lungenerkrankung (COPD) können nach den gegenwärtigen Forschungsergebnissen weder als eine rein immunologische noch als eine ausschließlich neuronale Erkrankung angesehen werden [1] [2]. Die entzündlichen Veränderungen werden von einer Vielzahl an immunologischen und neuronalen Mediatoren hervorgerufen und beeinflusst. Im Bereich der Pathophysiologie und Pathobiochemie des Asthma bronchiale sowie der COPD sind bereits über fünfzig Mediatoren mit verschiedenen Effekten verschiedenste pulmonale Funktionen beschrieben worden. Die Mediatoren werden dabei von Entzündungszellen, wie Mastzellen, Eosinophilen, Basophilen, Neutrophilen oder T-Lymphozyten, gebildet. Weiterhin gehören auch andere Zellen, wie Epithelzellen, Endothelzellen, Myozyten oder Atemwegsneurone, zu den Mediator-bildenden und freisetzenden Zellen. Neben den klassischen Mediatoren Noradrenalin in postganglionären sympathischen Nervenfasern und Acetylcholin in parasympathischen Nervenfasern existiert eine Reihe von Neuropeptiden, die ausgeprägte pharmakologische Effekte auf den Muskeltonus der Blutgefäße und der Bronchien, die Drüsenfunktion und auf Entzündungs- und Immunzellen hat. Diese Neuropeptide gehören zu keinem morphologisch eingrenzbaren System. Diese Neuropeptide werden unter dem Begriff des nicht-adrenergen nicht-cholinergen (NANC)-Systems zusammengefasst. Die Rolle des Nervensystems in Bezug auf die asthmatische oder chronisch obstruktive Erkrankung wurde bisher sehr unterschiedlich gewichtet und bewertet. Sehr früh begann man sich für das Nervensystem der menschlichen Lunge zu interessieren und es anatomisch detailliert zu beschreiben [3] [4] [5], da ein Zusammenhang zwischen dem Nervensystem und der Pathophysiologie des Asthma bronchiale und der COPD vermutet wurde. Seitdem wurden unterschiedliche Aspekte des Nervensystems untersucht. Etablierte Pharmakotherapiekonzepte mit Anticholinergika, wie Ipratropiumbromid (Atrovent®) oder Tiotropiumbromid (Spiriva®), bestehen darin, durch einen kompetitiven Antagonismus die Effekte des natürlichen Überträgerstoffes an den cholinergen Neuronen zu hemmen und damit die Erschlaffung der glatten Muskulatur der Bronchien zu erreichen. Die effektivsten Bronchodilatatoren sind die β2-Sympathomimetika (Sabutamol), welche effektiv die Freisetzung von Acetylcholin aus cholinergen Neuronen hemmen und gleichzeitig die β2-Rezeptoren an den motorischen Endplatten der Muskelzellen stimulieren. Dieser Wirkungsmechanismus führt zu einer Bronchodilatation durch Relaxation der glatten Muskulatur. Über die weitere Rolle des Nervensystems bei den chronisch obstruktiven Lungenerkrankungen des Menschen ist aber bisher nur wenig bekannt. Wegen der Komplexität der neuroimmunologischen Interaktion beim Asthma bronchiale und der COPD muss in Zukunft weitere Forschung zum Verständnis der Rolle der Atemwegsinnervation und deren Aktivierung und Interaktion mit Entzündungszellen unternommen werden. Dieser Artikel gibt eine Übersicht über die bisherigen Erkenntnisse der neuronalen Kontrolle der beiden großen obstruktiven Atemwegserkrankungen.

Abstract

Airway nerves have the capacity to control airway functions via neuronal reflexes and through neuromediators and neuropeptides. Neuronal mechanisms are known to play a key role in the initiation and modulation of airway hyperresponsiveness and inflammation. Therefore, the nerve fibres may contribute to airway narrowing in asthma and COPD. In addition to the traditional transmitters such as norepinephrine in postganglionic sympathetic nerve fibres and acetylcholine in parasympathetic nerve fibres, a large number of neuropeptides have been identified to have different pharmacological effects on the muscle tone of the vessels and bronchi, mucus secretion and immune cells. Meanwhile, a broad range of stimuli including capsaicin, bradykinin, hyperosmolar saline, tobacco smoke, allergens, ozone, inflammatory mediators and even cold, dry air have been shown to activate sensory nerve fibres to release neuropeptides such as the tachykinins substance P (SP) and neurokinin A (NKA) to mediate neurogenic inflammation. Different aspects of the neurogenic inflammation have been well studied in animal models of chronic airway inflammation and anticholinergic agents such as ipratropium bromide (Atrovent®) and tiotropium bromide (Spiriva®) have been proved to be important when used as bronchodilators for the treatment of obstructive airway diseases such as COPD. However, little is known about the role of neurogenic airway inflammation in human diseases. In this review, we address the current knowledge of the airway sensory nerves in human asthma and COPD.

Literatur

  • 1 Barnes P J. Asthma as an axon reflex.  Lancet. 1986;  1 242-245
  • 2 Barnes P J. Mediators of chronic obstructive pulmonary disease.  Pharmacol Rev. 2004;  56 515-548
  • 3 Willis T. Cap. XI: Opera omnia. De asthmate. Band II, Sect. 1 1681
  • 4 Lundberg J M, Hemsen A, Larsson O et al. Neuropeptide Y receptor in pig spleen: binding characteristics, reduction of cyclic AMP formation and calcium antagonist inhibition of vasoconstriction.  Regul Pept. 1988;  20 125-139
  • 5 Kummer W, Fischer A, Kurkowski R et al. The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry.  Neuroscience. 1992;  49 715-737
  • 6 Pisi G, Olivieri D, Chetta A. The airway neurogenic inflammation: Clinical and pharmacological implications.  Inflamm Allergy Drug Targets. 2009;  8 176-181
  • 7 Mann S P. The innervation of mammalian bronchial smooth muscle: The localization of catecholamines and cholinesterase.  Histochemistry. 1971;  3 319-331
  • 8 Doidge J M, Satchell D G. Adrenergic and nonadrenergic inhibitory nerves in mammalian airways.  J Auton Nervous System. 1982;  5 83-99
  • 9 Van der Velden V H, Hulsmann A R. Autonomic innervation of human airways: structure, function, and pathophysiology in asthma.  Neuroimmunomodulation. 1999;  6 145-159
  • 10 Sheppard M N, Kurian S S, Henzen-Logmans S C et al. Neurone-specific enolase and S-100: new markers for delineating the innervation of the respiratory tract in man and other mammals.  Thorax. 1983;  38 333-340
  • 11 Barnes P J, Chung K F, Page C P et al. Inflammatory mediators of asthma: an update.  Pharmacol Rev. 1998;  50 515-596
  • 12 Kim Y D, Lee S H, Lee S Y et al. The effect of thoracosopic thoracic sympathetomy on pulmonary function and bronchial hyperresponsiveness.  J Asthma. 2009;  46 276-279
  • 13 Barnes P, Karliner J, Hamilton C et al. Demonstration of alpha 1-adrenoceptors in guinea pig lung using 3H-prazosin.  Life Sci. 1979;  25 1207-1214
  • 14 Lundberg J M, Terenius L, Hokfelt T et al. High levels of neuropeptide Y in peripheral noradrenergic neurons in various mammals including man.  Neurosci Lett. 1983;  42 167-172
  • 15 Uddman R, Sundler F, Emson P. Occurrence and distribution of neuropeptide-Y-immunoreactive nerves in the respiratory tract and middle ear.  Cell Tissue Res. 1984;  237 321-327
  • 16 Bowden J J, Gibbins I L. Vasoactive intestinal peptide and neuropeptide Y coexist in non-noradrenergic sympathetic neurons to guinea pig trachea.  J Auton Nerv Syst. 1992;  38 1-19
  • 17 Fischer A, Mundel P, Mayer B et al. Nitric oxide synthase in guinea pig lower airway innervation.  Neurosci Lett. 1993;  149 157-160
  • 18 Myers A, Weinreich D, Undem B J et al. A reidentifiable parasympathetic ganglion on the bronchus of the guinea pig: anatomical and electrophysiological characteristics.  Fedii Am Socs exp Biol J. 1988;  2 A1056
  • 19 Myers A C, Undem B J, Weinreich D. Electrophysiological properties of neurons in guinea pig bronchial parasympathetic ganglia.  Am J Physiol. 1990;  259 L403-L409
  • 20 Kalia M, Mesulam M M. Brainstem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal tracheobronchial, pulmonary, cardial and gastrointestinal branches.  J comp Neurol. 1980;  193 467-508
  • 21 Kalia M, Mesulam M M. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion.  J Comp Neurol. 1980;  193 435-465
  • 22 Partanen M, Laitinen A, Hervonen A et al. Catecholamine- and acetylcholinesterase-containing nerves in human lower respiratory tract.  Histochemistry. 1982;  76 175-188
  • 23 Lundberg J M, Hokfelt T, Martling C R et al. Substance P-immunoreactive sensory nerves in the lower respiratory tract of various mammals including man.  Cell Tissue Res. 1984;  2352 251-261
  • 24 Canning B J, Fischer A. Localization of cholinergic nerves in lower airways of guinea pigs using antisera to choline acetyltransferase.  Am J Physiol. 1997;  272 L731-L738
  • 25 Dey R D, Shannon W A, Said S T et al. Localization of VIP-immunoreactive nerves in airways and pulmonary vessels of dogs, cat, and human subjects.  Cell Tissue Res. 1981;  220 231-238
  • 26 Fischer A, Canning B J, Kummer W. Correlation of vasoactive intestinal peptide and nitric oxide synthase with choline acetyltransferase in the airway innervation.  Ann N Y Acad Sci. 1996a;  805 717-722
  • 27 Dey R, Hoffpauir J, Said S I. Co-localisation of vasoacitve intestinal peptide- and substance P-containing nerves in cat bronchi.  Neuroscience. 1988;  24 275-281
  • 28 Fontan J J, Cortright D N, Krause J E et al. Substance P and neurokinin-1 receptor expression by intrinsic airway neurons in the rat.  Am J Physiol Lung Cell Mol Physiol. 2000;  278 L344-L355
  • 29 Nohr D, Eiden L E, Weihe E. Coexpression of vasoactive intestinal peptide, calcitonin gene-related peptide and substance P immunoreactivity in parasympathetic neurons of the rhesus monkey lung.  Neurosci Lett. 1995;  199 25-28
  • 30 Shimosegawa T, Foda H D, Said S I. [Met]enkephalin-Arg6-Gly7-Leu8-immunoreactive nerves in guinea-pig and rat lungs: distribution, origin, and co-existence with vasoactive intestinal polypeptide immunoreactivity.  Neuroscience. 1990;  36 737-750
  • 31 Ricco M M, Kummer W, Biglari B et al. Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways.  J Physiol (Lond). 1996;  496 521-530
  • 32 Barnes P J. Neurogenic inflammation in the airways.  Respir Physiol. 2001;  125 – 2 145-154
  • 33 Kuo Y L, Lai C J. Ovalbumin sensitizes vagal pulmonary C-fiber afferents in Brown Norway rats.  J Appl Physiol. 2008;  105 611-620
  • 34 Taylor-Clark T E, McAlexander M A, Nassenstein C. Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal.  J Physiol. 2008;  15; 586 3447-3459
  • 35 Solway J, Leff A R. Sensory neuropeptides and airway function.  J Appl Physiol. 1991;  71 2077-2087
  • 36 Verastegui C, Prada Oliveira A, Fernandez-Vivero J et al. Calcitonin gene-related peptide immunoreactivity in adult mouse lung.  Eur J Histochem. 1997;  41 119-126
  • 37 Dinh Q T, Groneberg D A, Witt C et al. Expression of Tyrosine Hydroxylase and Neuropeptide Tyrosine in Mouse Sympathetic Airway-specific Neurons under Normal Situation and Allergic Airway Inflammation.  Clin Exp Allergy. 2004;  34 1934-1941
  • 38 Kummer W, Bachmann S, Neuhuber W L et al. Tyrosine-hydroxylase-containing vagal afferent neurons in the rat nodose ganglion are independent from neuropeptide-Y-containing populations and project to esophagus and stomach.  Cell Tissue Res. 1993;  271 135-144
  • 39 Coburn R F, Tomita T. Evidence for nonadrenergic inhibitory nerves in the guinea pig trachealis muscle.  Am J Physiol. 1973;  224 1072-1080
  • 40 Gosens R, Zaagsma J, Meurs H, Halayko A J. Muscarinic receptor signaling in the pathophysiology of asthma and COPD.  Respir Res. 2006;  9; 7 73
  • 41 Gross N J. Anticholinergic agents in asthma and COPD.  Eur J Pharmacol. 2006;  533 36-39
  • 42 Belmonte K E. Cholinergic pathways in the lungs and anticholinergic therapy for chronic obstructive pulmonary disease.  Proc Am Thorac Soc. 2005;  2 297-304
  • 43 Gross N J, Skorodin M S. Role of the parasympathetic system in airway obstruction due to emphysema.  N Engl J Med. 1984;  16; 311 421-425
  • 44 Kummer W, Lips K S, Pfeil U. The epithelial cholinergic system of the airways.  Histochem Cell Biol. 2008;  130 219-234
  • 45 Boichot E, Lagente V, Paubert-Braquet M et al. Inhaled substance P induces activation of alveolar macrophages and increases airway responses in the guinea-pig.  Neuropeptides. 1993;  25 307-313
  • 46 Widdicombe J G. Autonomic regulation. i-NANC/e-NANC.  Am J Respir Crit Care Med. 1998;  158 171-175
  • 47 Karlsson J A, Finney M J, Persson C G et al. Substance P antagonists and the role of tachykinins in non-cholinergic bronchoconstriction.  Life Sci. 1984;  35 2681-2691
  • 48 Li C G, Rand M J. Evidence that part of the NANC relaxant response of guinea-pig trachea to electrical field stimulation is mediated by nitric oxide.  Br J Pharmacol. 1991;  102 91-94
  • 49 Chang M, Leeman S E, Niall H D. Amino-acid sequence of substance P.  Nat New Biol. 1971;  232 86-87
  • 50 Tatemoto K, Lundberg J M, Jornvall H, Mutt V. Neuropeptide K: isolation, structure and biological activities of a novel brain tachykinin.  Biochem Biophys Res Commun. 1985;  128 947-953
  • 51 Kage R, McGregor G P, Thim L et al. Neuropeptide-gamma: a peptide isolated from rabbit intestine that is derived from gamma-preprotachykinin.  J Neurochem. 1988;  50 1412-1417
  • 52 Kotani Y, Hirota Y, Suguyama K et al. Effects of noxious stimuli and anesthetic agents on substance P content in rat central nervous system.  Jpan J Pharmacol. 1986;  40 143-147
  • 53 Groneberg D A, Harrison S, Dinh Q T et al. Tachykinins in the respiratory tract.  Curr Drug Targets. 2006;  7 1005-1010
  • 54 Hua X Y, Theodorsson-Norheim E, Brodin E et al. Multiple tachykinins (neurokinin A, neuropeptide K and substance P) in capsaicin-sensitive sensory neurons in the guinea-pig.  Regul Pept. 1985;  3 1-19
  • 55 Dinh Q T, Groneberg D A, Peiser C et al. Expression of substance P and nitric oxide synthase in vagal sensory neurons innervating the mouse airways.  Regul Pept. 2005;  126 189-194
  • 56 Dinh Q T, Groneberg D A, Peiser C et al. Nerve growth factor-induced substance P in capsaicin-insensitive vagal neurons innervating the lower mouse airway.  Clin Exp Allergy. 2004;  34 1474-1479
  • 57 Helke C J, Krause J E, Mantyh P W et al. Diversity in mammalian tachykinin peptidergic neurons: multiple peptides, receptors, and regulatory mechanisms.  Faseb J. 1990;  4 1606-1615
  • 58 Komatsu T, Yamamoto M, Shimokata K et al. Distribution of substance P-immunoreactive and calcitonin gene-related peptide-immunoreactive nerves in normal human lungs.  Int Arch Allergy Appl Immunol. 1991;  95 23-28
  • 59 Joos G F, Germonpré P R, Pauwels R A. Role of tachykinins in asthma.  Allergy. 2000;  55 321-337
  • 60 Hua X Y, Theodorsson-Norheim E, Lundberg J M et al. Co-localization of tachykinins and calcitonin gene-related peptide in capsaicin-sensitive afferents in relation to motility effects on the human ureter in vitro.  Neuroscience. 1987;  23 693-703
  • 61 Van Rossum D, Hanisch U K, Quirion R. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors.  Neurosci Biobehav Rev. 1997;  21 649-678
  • 62 Adriaensen D, Scheuermann D W, Gajda M et al. Functional implications of extensive new data on the innervation of pulmonary neuroepithelial bodies.  Ital J Anat Embryol. 2001;  106 395-403
  • 63 Van Rossum D, Hanisch U K, Quirion R. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors.  Neurosci Biobehav Rev. 1997;  21 649-678
  • 64 Springer J, Geppetti P, Fischer A. Calcitonin gene-related peptide as inflammatory mediator.  Pulm Pharmacol Ther. 2003;  16 121-130
  • 65 Kajekar R, Myers A C. Calcitonin gene-related peptide affects synaptic and membrane properties of bronchial parasympathetic neurons.  Respir Physiol Neurobiol. 2008;  1; 160 28-36
  • 66 Tsukiji J, Sango K, Udaka N. Long-term induction of beta-CGRP mRNA in rat lungs by allergic inflammation.  Life Sci. 2004;  26; 76 163-177
  • 67 Groneberg D A, Rabe K F, Fischer A. Novel concepts of neuropeptide-based drug therapy: vasoactive intestinal polypeptide and its receptors.  Eur J Pharmacol. 2006;  8; 533 182-194
  • 68 Aizawa H, Inoue H, Shigyo M et al. VIP antagonists enhance excitatory cholinergic neurotransmission in the human airway.  Lung. 1994;  172 159-167
  • 69 Cardell L O, Uddman R, Edvinsson L. Low plasma concentrations of VIP and elevated levels of other neuropeptides during exacerbations of asthma.  Eur Respir J. 1994;  7 2169-2173
  • 70 Schmidt D T, Rühlmann E, Waldeck B et al. The effect of the vasoactive intestinal polypeptide agonist Ro 25 – 1553 on induced tone in isolated human airways and pulmonary artery.  Naunyn Schmiedebergs Arch Pharmacol. 2001;  364 314-320
  • 71 Kinhult J, Uddman R, Cardell L O. The induction of carbon monoxide-mediated airway relaxation by PACAP 38 in isolated guinea pig airways.  Lung. 2001;  179 1-8
  • 72 Yoshihara Y, Tsukazaki T, Osaki M et al. Altered expression of inflammatory cytokines in primary osteoarthritis by human T lymphotropic virus type I retrovirus infection: a cross-sectional study.  Arthritis Res Ther. 2004;  6 R347-R354
  • 73 Onoue S, Ohmori Y, Endo K et al. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide attenuate the cigarette smoke extract-induced apoptotic death of rat alveolar L2 cells.  Eur J Biochem. 2004;  271 1757-1767
  • 74 Tatemoto K, Carlquist M, Mutt V. Neuropeptide Y- a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide.  Nature. 1982;  296 659-660
  • 75 Verastegui C, Fernandez-Vivero J, Prada A et al. Presence and distribution of 5HAT-,VIP-, NPY-, and SP-immunoreactive structures in adult mouse lung.  Histol Histopathol. 1997;  12 909-918
  • 76 Bing C, King P, Pickavance L et al. The effect of moxonidine on feeding and body fat in obese Zucker rats: role of hypothalamic NPY neurones.  Br J Pharmacol. 1999;  127 35-42
  • 77 Lundberg J M, Modlin A. Neuropeptid Y in the airways. Neuropeptides in Respiratory Medicine. New York: Marcel Dekker; 1994: 161-172
  • 78 De Jongste J C, Jongejan R C, Kerrebijn K F. Control of airway caliber by autonomic nerves in asthma and in chronic obstructive pulmonary disease.  Am Rev Respir Dis. 1991;  143 1421-1426
  • 79 Lacroix J S, Mosimann B L. Attenuation of allergen-evoked nasal responses by local pretreatment with exogenous neuropeptide Y in atopic patients.  J Allergy Clin Immunol. 1996;  98 611-616
  • 80 Cardell L O, Uddman R, Edvinsson L. Low plasma concentrations of VIP and elevated levels of other neuropeptides during exacerbations of asthma.  Eur Respir J. 1994;  7 2169-2173
  • 81 Chanez P, Springall D, Vignola A M et al. Bronchial mucosal immunoreactivity of sensory neuropeptides in severe airway diseases.  Am J Respir Crit Care Med. 1998;  158 985-990
  • 82 Fischer A, McGregor G P, Saria A et al. Induction of tachykinin gene and peptide expression in guinea pig nodose primary afferent neurons by allergic airway inflammation.  J Clin Invest. 1996;  98 2284-2291
  • 83 Undem B J, Hunter D D, Liu M et al. Allergen-induced sensory neuroplasticity in airways.  Int Arch Allergy Immunol. 1999;  118 150-153
  • 84 Myers A C, Kajekar R, Undem B J. Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways.  Am J Physiol Lung Cell Mol Physiol. 2002;  282 L775-L781
  • 85 Dinh Q T, Mingomataj E, Quarcoo D et al. Allergic airway inflammation induces tachykinin peptides expression in vagal sensory neurons innervating mouse airways.  Clin Exp Allergy. 2005;  35 820-825
  • 86 Quarcoo D, Schulte-Herbruggen O, Lommatzsch M et al. Nerve growth factor induces increased airway inflammation via a neuropeptide-dependent mechanism in a transgenic animal model of allergic airway inflammation.  Clin Exp Allergy. 2004;  34 1146-1151
  • 87 Kollarik M, Dinh Q T, Fischer A et al. Capsaicin-sensitive and -insensitive vagal bronchopulmonary C-fibres in the mouse.  J Physiol. 2003;  15 869-879
  • 88 Michael G J, Averill S, Nitkunan A et al. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord.  J Neurosci. 1997;  17 8476-8490
  • 89 Dinh Q T, Groneberg D A, Peiser C et al. Substance P expression in TRPV1 and trkA-positive dorsal root ganglion neurons innervating the mouse lung.  Respir Physiol Neurobiol. 2004;  144 15-24
  • 90 De Vries A, Engels F, Henricks P A et al. Airway hyper-responsiveness in allergic asthma in guinea-pigs is mediated by nerve growth factor via the induction of substance P: a potential role for trkA.  Clin Exp Allergy. 2006;  36 1192-1200
  • 91 Barnes P J. Neurogenic inflammation in the airways.  Respir Physiol. 2001;  125 145-154
  • 92 Jancso N, Jancso-Gabor A, Szolcsanyi J. Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin.  Br J Pharmacol Chemother. 1967;  31 138-151
  • 93 Trevisani M, Smart D, Gunthorpe M J et al. Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1.  Nat Neurosci. 2002;  5 546-551
  • 94 Trevisani M, Gazzieri D, Benvenuti F et al. Ethanol Causes Inflammation in the Airways by a Neurogenic and TRPV1-Dependent Mechanism.  J Pharmacol Exp Ther. 2004;  309 1167-1173
  • 95 Dinh Q T, Klapp B F, Fischer A. Die sensible Atemwegsinnervation und die Tachykinine bei Asthma und chronisch-obstruktiver Lungenerkrankung (COPD).  Pneumologie. 2006;  60 80-85
  • 96 Geppetti P, Materazzi S, Nicoletti P. The transient receptor potential vanilloid 1: role in airway inflammation and disease.  Eur J Pharmacol. 2006;  533 207-214
  • 97 Peiser C, Trevisani M, Groneberg D A et al. Dopamine type 2 receptor expression and function in rodent sensory neurons projecting to the airways.  Am J Physiol Lung Cell Mol Physiol. 2005;  289 L153-L158
  • 98 Levi-Montalcini R. The nerve growth factor 35 years later.  Science. 1987;  237; 4819 1154-1162
  • 99 Levi-Montalcini R, Skaper S D, Dal Toso R et al. Nerve growth factor: from neurotrophin to neurokine.  Trends Neurosci. 1996;  11 514-520
  • 100 Leon A, Buriani A, Dal Toso R et al. Mast cells synthesize, store, and release nerve growth factor.  Proc Natl Acad Sci USA. 1994;  91; 9 3739-3743
  • 101 Noga O, Hanf G, Gorges D et al. Regulation of NGF and BDNF by dexamethasone and theophylline in human peripheral eosinophils in allergics and non-allergics.  Regul Pept. 2005;  132 74-79
  • 102 Braun A, Lommatzsch M, Mannsfeldt A et al. Cellular sources of enhanced brain-derived neurotrophic factor production in a mouse model of allergic inflammation.  Am J Respir Cell Mol Bio. 1999;  21 537-546
  • 103 Nassenstein C, Braun A, Erpenbeck V J et al. The neurotrophins nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 are survival and activation factors for eosinophils in patients with allergic bronchial asthma.  J Exp Med. 2003;  198 455-467
  • 104 Virchow J C, Julius P, Lommatzsch M et al. Neurotrophins are increased in bronchoalveolar lavage fluid after segmental allergen provocation.  Am J Respir Crit Care Med. 1998;  158 2002-2005
  • 105 Nassenstein C, Dawbarn D, Pollock K et al. Pulmonary distribution, regulation, and functional role of Trk receptors in a murine model of asthma.  J Allergy Clin Immunol. 2006;  118 597-605
  • 106 Hunter D D, Myers A C, Undem B J. Nerve growth factor-induced phenotypic switch in guinea pig airway sensory neurons.  Am J Respir Crit Care. 2000;  161 1985-1990

PD Dr. med. Quoc Thai Dinh

Klinik für Pneumologie
Leiter der Arbeitsgruppe:
Experimentelle Pneumologie und Allergologie
Medizinische Hochschule Hannover (MHH)

Carl-Neuberg-Str. 1
30625 Hannover

Email: Dinh.Quoc@mh-hannover.de

    >