Abstract
Conjugated polymer could be obtained by the polymerization of
4,7-diethynylbenzo[2,1,3]thiadiazole (M-1 ) with 1,4-diazidobenzene (M-2 ) via click reaction. The polymer shows
strong blue-green fluorescence due to the extended π-electronic
structure in the main chain backbone. The responsive optical properties
of the polymer on various transition metal ions were investigated
by fluorescence spectroscopy. Compared with other transition metal
cations, such as Co²+ , Hg²+ ,
Ag+ , Cd²+ , Cu²+ and
Zn²+ , Ni²+ showed
the most pronounced fluorescence response in the presence of the
conjugated polymer. The results indicate this kind of polymer with
benzo[2,1,3]thiadiazole and triazole units can
be used as a selective fluorescence sensor for Ni²+ detection.
Key words
conjugated polymer - click reaction - fluorescence
sensor - nickel ion detection
References and Notes
<A NAME="RW04110ST-1A">1a </A>
McQuade DT.
Pullen AE.
Swager TM.
Chem. Rev.
2000,
100:
2537
<A NAME="RW04110ST-1B">1b </A>
Thomas SW.
Joly GD.
Swager TM.
Chem. Rev.
2007,
107:
1339
<A NAME="RW04110ST-2A">2a </A>
Nolan EM.
Lippard SJ.
Chem. Rev.
2008,
108:
3443
<A NAME="RW04110ST-2B">2b </A>
Kim IB.
Dunkhorst A.
Gilbert J.
Bunz UHF.
Macromolecules
2005,
38:
4560
<A NAME="RW04110ST-2C">2c </A>
Fan L.-J.
Jones WE.
J. Am. Chem. Soc.
2006,
128:
6784
<A NAME="RW04110ST-3A">3a </A>
Ashton WM.
Nature (London)
1972,
237:
46
<A NAME="RW04110ST-3B">3b </A>
Prophete C.
Carlson EA.
Li Y.
Duffy J.
Steinetz B.
Lasano S.
Zelikoff JT.
Fish
Shellfish Immunol.
2006,
21:
325
<A NAME="RW04110ST-4A">4a </A>
Lin W.
Yuan L.
Cao Z.
Feng J.
Feng Y.
Dyes Pigments
2009,
83:
14
<A NAME="RW04110ST-4B">4b </A>
Maisonneuve S.
Fang Q.
Xie J.
Tetrahedron
2008,
64:
8716
<A NAME="RW04110ST-4C">4c </A>
Chattopadhyay N.
Mallick A.
Sengupta S.
J.
Photochem. Photobiol. A: Chem.
2006,
177:
55
<A NAME="RW04110ST-4D">4d </A>
Grabchev I.
Chovelon J.-M.
Nedelcheva A.
J.
Photochem. Photobiol. A: Chem.
2006,
183:
9
<A NAME="RW04110ST-4E">4e </A>
Xiao Y.
Qian X.
Tetrahedron Lett.
2003,
44:
2087
<A NAME="RW04110ST-5A">5a </A>
Zhang Y.
Murphy CB.
Jones WE.
Macromolecules
2002,
35:
630
<A NAME="RW04110ST-5B">5b </A>
Feng J.
Li Y.
Yang M.
J.
Polym. Sci. Part A: Polym. Chem.
2009,
47:
222
<A NAME="RW04110ST-5C">5c </A>
Liu Y.
Zhang S.
Miao Q.
Zheng L.
Zong L.
Cheng Y.
Macromolecules
2007,
40:
4839
<A NAME="RW04110ST-5D">5d </A>
Huang X.
Xu Y.
Miao Q.
Zong L.
Hu H.
Cheng Y.
Polymer
2009,
50:
2793
<A NAME="RW04110ST-6A">6a </A>
Kolb HC.
Finn MG.
Sharpless KB.
Angew. Chem. Int.
Ed.
2001,
40:
2004
<A NAME="RW04110ST-6B">6b </A>
Rostovtsev VV.
Green LG.
Fokin VV.
Sharpless KB.
Angew.
Chem. Int. Ed.
2002,
41:
2596
<A NAME="RW04110ST-7A">7a </A>
Droumaguet BL.
Velonia K.
Macromol.
Rapid. Commun.
2008,
29:
1073
<A NAME="RW04110ST-7B">7b </A>
Lundberg P.
Hawker CJ.
Hult A.
Malkoch M.
Macromol. Rapid. Commun.
2008,
29:
998
<A NAME="RW04110ST-7C">7c </A>
Binder WH.
Sachsenhofer R.
Macromol. Rapid.
Commun.
2008,
29:
952
<A NAME="RW04110ST-7D">7d </A>
Lodge TP.
Macromolecules
2009,
42:
3827
<A NAME="RW04110ST-8">8 </A>
Tamanini E.
Katewa A.
Sedger LM.
Todd MH.
Watkinson M.
Inorg.
Chem.
2009,
48:
319
<A NAME="RW04110ST-9">9 </A>
Zheng L.
Huang X.
Shen Y.
Cheng Y.
Synlett
2010,
453
<A NAME="RW04110ST-10A">10a </A>
Huang X.
Xu Y.
Zhen L.
Meng J.
Cheng Y.
Polymer
2009,
50:
5996
<A NAME="RW04110ST-10B">10b </A>
Huang X.
Meng J.
Dong Y.
Cheng Y.
Zhu C.
J. Polym. Sci.
Part A: Polym. Chem.
2010,
48:
997
<A NAME="RW04110ST-10C">10c </A>
Liu X.
Zhu J.
J. Phys. Chem. B
2009,
113:
8214
<A NAME="RW04110ST-10D">10d </A>
Liu S.
Fang C.
Zhao Q.
Fan Q.
Huang W.
Macromol.
Rapid Commun.
2008,
29:
1212
<A NAME="RW04110ST-11">11 </A>
Neto BAD.
Lopes AS.
Ebeling G.
Goncalves RS.
Costa VEU.
Quina FH.
Dupont J.
Tetrahedron
2005,
61:
10975
<A NAME="RW04110ST-12">12 </A>
Minato M.
Lahti PM.
J. Am. Chem. Soc.
1997,
119:
2187
<A NAME="RW04110ST-13">13 </A>
Karim MA.
Cho Y.
Park JS.
Ryu TI.
Lee MJ.
Song M.
Jin S.
Lee JW.
Gal Y.
Macromol.
Chem. Phys.
2008,
209:
1967
<A NAME="RW04110ST-14">14 </A>
Procedure for
the Chiral Polymer : A mixture of M-1 (73.60
mg, 0.40 mmol), M-2 (64.00 mg, 0.40 mmol),
10 mol% sodium ascorbate (7.92 mg, 0.040 mmol) and 5 mol% Cu2 SO4 ˙5H2 O
(4.99 mg, 0.020 mmol) was dissolved in a solvent mixture: THF (10
mL), t -BuOH (10 mL), and H2 O (10
mL). The solution was stirred at 30-36 ˚C for
2 d under N2 . The solvents were removed under reduced
pressure and the residue was extracted with CHCl3 (2 × 50
mL). The organic layer was washed with an aq NH4 OH solution,
H2 O and then dried over anhyd Na2 SO4 .
After the solution was removed, the resulting polymer was precipitated
into MeOH, and then filtered and washed with MeOH several times.
Further purification could be conducted by dissolving the polymer
in CHCl3 to precipitate in MeOH again. The polymer was
dried in vacuum to give a yellow solid (100.01 mg, 72.2% yield).
Polymer spectroscopic data: ¹ H NMR (300 MHz,
CDCl3 ): δ = 9.35 (s, 1 H), 9.22 (s,
1 H), 8.70-8.82 (m, 2 H), 7.92-8.20 (m, 4 H).
FT-IR (KBr): 2960, 2923, 2094, 1521, 1239, 1038 cm-¹ .
Anal. Calcd for C16 H8 N8 S: C, 55.81;
H, 2.34; N, 32.54. Found: C, 54.68; H, 2.12; N, 31.29.
<A NAME="RW04110ST-15A">15a </A>
Justin KR.
Lin JT.
Velusamy M.
Tao Y.-T.
Chuen C.-H.
Adv. Funct. Mater.
2004,
14:
83
<A NAME="RW04110ST-15B">15b </A>
Zhang X.
Gorohmaru H.
Kadowaki M.
Kobayashi T.
Ishi-i T.
Thiemann T.
Mataka S.
J.
Mater. Chem.
2004,
14:
1901