References and Notes
<A NAME="RU02810ST-1">1</A>
Rovnyak GC.
Kimball SD.
Beyer B.
Cucinotta G.
Dimarco JD.
Gougoutas J.
Hedberg A.
Malley M.
McCarthy JP.
Zhang R.
Mereland S.
J.
Med. Chem.
1995,
38:
119
<A NAME="RU02810ST-2A">2a</A>
Hilgeroth A.
Mini-Rev. Med. Chem.
2002,
2:
235
<A NAME="RU02810ST-2B">2b</A>
Hilgeroth A.
Lilie H.
Eur. J. Med. Chem.
2003,
38:
495
<A NAME="RU02810ST-3">3</A>
Straub T.
Boesenberg C.
Gekeler V.
Boege F.
Biochemistry
1997,
36:
10777
<A NAME="RU02810ST-4A">4a</A>
Robert J.
Jarry C.
J.
Med. Chem.
2003,
46:
4805
<A NAME="RU02810ST-4B">4b</A>
Avendaño C.
Menéndez JC.
Med.
Chem. Rev. Online
2004,
1:
419
<A NAME="RU02810ST-5">5</A>
Donkor IO.
Zhou X.
Schmidt J.
Agrawal KC.
Kishore V.
Bioorg.
Med. Chem.
1998,
6:
563
<A NAME="RU02810ST-6A">6a</A>
Lelais G.
MacMillan DWC.
Aldrichimica Acta
2006,
39:
79
<A NAME="RU02810ST-6B">6b</A>
You S.-L.
Chem.
Asian J.
2007,
2:
820
<A NAME="RU02810ST-6C">6c</A>
Rueping M.
Sugiono E.
Schoepke FR.
Synlett
2010,
852
<A NAME="RU02810ST-7A">7a</A>
Su W.
Li J.
Zheng Z.
Shen Y.
Tetrahedron
Lett.
2005,
46:
6037
<A NAME="RU02810ST-7B">7b</A>
Reddy KR.
Reddy CV.
Mahesh M.
Raju PVK.
Reddy VVN.
Tetrahedron
Lett.
2003,
44:
8173
<A NAME="RU02810ST-7C">7c</A>
Maiti G.
Kundu P.
Guin C.
Tetrahedron Lett.
2003,
44:
2757
<A NAME="RU02810ST-7D">7d</A>
Lu J.
Ma H.
Synlett
2000,
63
<A NAME="RU02810ST-7E">7e</A>
Hu EH.
Sidler DR.
Dolling U.-H.
J.
Org. Chem.
1998,
63:
3454
<A NAME="RU02810ST-8A">8a</A>
Hantzsch A.
Ann. Chem.
1882,
1:
215
<A NAME="RU02810ST-8B">8b</A>
Vanden Eynde JJ.
Mayence A.
Molecules
2003,
8:
381
<A NAME="RU02810ST-8C">8c</A>
Simon C.
Constantieux T.
Rodriguez J.
Eur.
J. Org. Chem.
2004,
4957
For selected recent reports, see:
<A NAME="RU02810ST-9A">9a</A>
Maiti S.
Menendez
JC.
Synlett
2009,
2249
<A NAME="RU02810ST-9B">9b</A>
Wan J.-P.
Gan S.-F.
Sun
G.-L.
Pan Y.-J.
J. Org. Chem.
2009,
74:
2862
<A NAME="RU02810ST-9C">9c</A>
Kumar A.
Marurya RA.
Tetrahedron
2008,
64:
3477
<A NAME="RU02810ST-9D">9d</A>
Bartoli G.
Babiuch K.
Bosco M.
Carlone A.
Galzerano P.
Melchiorre P.
Sambri L.
Synlett
2007,
2897
<A NAME="RU02810ST-9E">9e</A>
Sridharan V.
Perumal PT.
Avendano C.
Menendez JC.
Tetrahedron
2007,
63:
4407
<A NAME="RU02810ST-9F">9f</A>
Ishar MPS.
Kumar K.
Kaur S.
Kumar S.
Girdhar NK.
Sachar S.
Marwaha A.
Kapoor A.
Org. Lett.
2001,
3:
2133
<A NAME="RU02810ST-10">10</A>
Jie JJ.
Yu J.
Sun X.-X.
Rao Q.-Q.
Gong L.-Z.
Angew. Chem.
Int. Ed.
2008,
47:
2458
<A NAME="RU02810ST-11">11</A>
Moreau J.
Duboc A.
Hubert C.
Hurvois J.-P.
Renaud J.-L.
Tetrahedron
Lett.
2007,
48:
8647
For reviews, see:
<A NAME="RU02810ST-12A">12a</A>
Miyabe H.
Takemoto Y.
Bull. Chem. Soc. Jpn.
2008,
81:
785
<A NAME="RU02810ST-12B">12b</A> For related papers, see:
Takemoto Y.
Org. Biomol. Chem.
2005,
3:
4299
<A NAME="RU02810ST-12C">12c</A>
Okino T.
Hoashi Y.
Takemoto Y.
J.
Am. Chem. Soc.
2003,
125:
12672
<A NAME="RU02810ST-12D">12d</A>
Okino T.
Hoashi Y.
Furukawa T.
Xu X.
Takemoto Y.
J.
Am. Chem. Soc.
2005,
127:
119
<A NAME="RU02810ST-12E">12e</A>
Inokuma T.
Hoashi Y.
Takemoto Y.
J.
Am. Chem. Soc.
2006,
128:
9413
<A NAME="RU02810ST-13A">13a</A>
Davis TA.
Wilt JC.
Johnston JN.
J. Am. Chem. Soc.
2010,
132:
2880
<A NAME="RU02810ST-13B">13b</A>
Nugent BM.
Yoder RA.
Johnston JN.
J. Am. Chem. Soc.
2004,
126:
3418
<A NAME="RU02810ST-13C">13c</A>
Ishihara K.
Nakano K.
Akakura M.
Org.
Lett.
2008,
10:
2893
<A NAME="RU02810ST-13D">13d</A>
Ishihara K.
Nakano K.
J. Am. Chem. Soc.
2007,
129:
8930
<A NAME="RU02810ST-13E">13e</A>
Ishihara K.
Nakano K.
J. Am. Chem. Soc.
2005,
127:
10504
<A NAME="RU02810ST-14A">14a</A>
Klausen RS.
Jacobsen EN.
Org. Lett.
2009,
11:
887
<A NAME="RU02810ST-14B">14b</A>
Reiseman SE.
Doyle AG.
Jacobsen EN.
J. Am. Chem. Soc.
2008,
130:
7198
<A NAME="RU02810ST-14C">14c</A>
Raheem IT.
Thiara PS.
Peterson EA.
Jacobsen EN.
J.
Am. Chem. Soc.
2007,
129:
13404
<A NAME="RU02810ST-15">15</A>
When 2a (E/Z = 25:75)
was reacted with 3a in the presence of
DFA-(S,S)-1c, 4aa was obtained
in 50% ee (compared
to entry 8 in Table
[¹]
). Therefore we concluded
that the stereochemistry of the enamino esters would not effect
to the enantioselectivities.
<A NAME="RU02810ST-16">16</A>
The absolute configuration of the
thiourea catalysts described has been assigned based on the known configuration
of the starting 1,2-diaminocyclohexane or has been established by
X-ray-analysis (CCDC768496).
<A NAME="RU02810ST-17">17</A>
In addition to toluene, we tested
a chlorinated solvent (CH2Cl2) and ethers
(THF, Et2O). Lower temperature (0 ˚C) led to
a decrease in yield (<5%), while higher temperatures (50 ˚C)
and catalyst loading (20 mol%) led to an increased yield
but lower ee (28%, 55% ee). The addition of molecular sieves
(3 Å, 4 Å) inhibited the reaction, while other
additives (NaSO4, MgSO4) led to a decrease
in enantioselectivity without improving the yield.
<A NAME="RU02810ST-18">18</A>
Typical Procedure
for the Reaction of 2j and 3a Catalyzed by Thiourea 1g - DFA
To
a solution of cinnamaldehyde (3a, 17.7
mg, 0.10 mmol) in toluene (0.40 mL) were added thiourea 1f (5.4 mg, 0.010 mmol) and 0.1 M difluoroacetic
acid in toluene solution (100 µL, 0.010 mmol) at r.t. To
this mixture was added dropwise (50 µL/30 min)
a solution of 2j (22.0 mg, 0.10 mmol) in toluene
(0.50 mL) at r.t. After being stirred at the same temperature for
12 h the reaction mixture was concentrated in vacuo. The resulting
residue was purified by silica gel chromatography (hexane-EtOAc = 5:1)
to give 4ja (30.8 mg, 81%) as
a yellow oil.
(
R
)-Ethyl 1-Benzyl-2-methyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3-carboxylate (4ja)
IR (ATR): 2979, 2925, 1684,
1516 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 8.13 (d, J = 8.8 Hz,
2 H), 7.39 (d, J = 8.8 Hz,
2 H), 7.38-7.31 (m, 3 H), 7.22-7.20 (m, 2 H),
6.02 (d, J = 7.6
Hz, 1 H), 4.93 (dd, J = 7.6,
5.5 Hz, 1 H), 4.78 (d, J = 5.5
Hz, 1 H), 4.69 (d, J = 16.8
Hz, 1 H), 4.59 (d, J = 16.8 Hz,
1 H), 3.99 (q, J = 7.1
Hz, 2 H), 2.46 (s, 3 H), 1.09 (t, J = 7.1
Hz, 3 H) ppm. ¹³C NMR (125 MHz, CDCl3): δ = 168.3,
155.9, 149.8, 146.3, 137.6, 130.3, 129.0, 128.1, 127.7, 126.2, 123.6,
106.6, 99.3, 59.5, 53.8, 40.5, 16.0, 14.2. MS (FAB+): m/z (%) = 378
(100) [M+]. HRMS (FAB+):
m/z calcd for C22H22N2O4 [M+]:
378.1580; found: 378.1578. HPLC (CHIRALCEL AD-H, hexane-2-PrOH = 90:10,
flow rate 1.0 mL/min, 254 nm): t
r(minor) = 12.0
min, t
r(major) = 15.3
min. A sample with 80% ee gave [α]D
²³ +309.8
(c 1.36, CHCl3).