References and Notes
<A NAME="RG12610ST-1A">1a</A>
Koch SSC.
Chamberlin AR. In Studies
in Natural Products Chemistry
Vol. 16:
.
Elsevier;
Amsterdam:
1995.
p.687-725
<A NAME="RG12610ST-1B">1b</A>
Friedrichsen W. In Comprehensive Heterocyclic
Chemistry II
Vol. 2:
Bird CW.
Pergamon Press;
Oxford:
1996.
p.351
<A NAME="RG12610ST-1C">1c</A>
Rao
YS.
Chem. Rev.
1976,
76:
625
<A NAME="RG12610ST-1D">1d</A>
Haffmann HMR.
Rabe J.
Angew.
Chem., Int. Ed. Engl.
1985,
24:
94
<A NAME="RG12610ST-1E">1e</A>
Mulzer J.
Salimi N.
Hartl H.
Tetrahedron:
Asymmetry
1993,
4:
457
<A NAME="RG12610ST-1F">1f</A>
Schmitz WD.
Messerschmidt NB.
Romo D.
J. Org. Chem.
1998,
63:
2058
<A NAME="RG12610ST-1G">1g</A>
Maier MS.
Marimon DIG.
Stortz C.-A.
Alder MJ.
J.
Nat. Prod.
1999,
62:
1565
<A NAME="RG12610ST-1H">1h</A>
Hislop J.-A.
Hunt MB.
Fielder S.
Rowan DD.
J. Agric. Food Chem.
2004,
52:
7075
<A NAME="RG12610ST-1I">1i</A>
Frediani P.
Rosi L.
Frediani M.
Bartolucci C.
Bambagiotti-Alberti M.
J.
Agric. Food Chem.
2007,
55:
3877
<A NAME="RG12610ST-1J">1j</A>
Schlutt B.
Moran N.
Schieberle P.
Hofmann T.
J. Agric. Food Chem.
2007,
55:
9634
<A NAME="RG12610ST-1K">1k</A>
Pertino MW.
Theoduloz C.
Rodriguez JA.
Yanez T.
Lazo V.
Schmeda-Hirschmann G.
J.
Nat. Prod.
2010,
73:
639
<A NAME="RG12610ST-2">2</A>
Lambert JD.
Rice JE.
Hong J.
Hou Z.
Yang CS.
Bioorg.
Med. Chem. Lett.
2005,
15:
873
<A NAME="RG12610ST-3A">3a</A>
Harchen C.
Bruchner R.
Angew.
Chem. Int. Ed.
1997,
36:
2750
<A NAME="RG12610ST-3B">3b</A>
Drioli S.
Felluga F.
Forzato C.
Nitti P.
Pitacco G.
Valentin E.
J. Org. Chem.
1998,
63:
2385
<A NAME="RG12610ST-3C">3c</A>
de March P.
Figueredo M.
Font J.
Raya J.
Org. Lett.
2000,
2:
163
<A NAME="RG12610ST-3D">3d</A>
Delhaye L.
Merschaert A.
Diker K.
Houpis IN.
Synthesis
2006,
1437
<A NAME="RG12610ST-4A">4a</A>
Gutierrez JLG.
Jimenez-Cruz F.
Espinosa NR.
Tetrahedron
Lett.
2005,
46:
803
<A NAME="RG12610ST-4B">4b</A>
Burstein C.
Tschan S.
Xie X.
Glorius F.
Synthesis
2006,
2418
<A NAME="RG12610ST-4C">4c</A>
Tiecco M.
Testaferri L.
Temperini A.
Terlizzi R.
Bagnoli L.
Marini F.
Santi C.
Synlett
2006,
587
<A NAME="RG12610ST-4D">4d</A>
Vitale M.
Prestat G.
Lopes D.
Madec D.
Poli G.
Synlett
2006,
2231
<A NAME="RG12610ST-4E">4e</A>
Cho CS.
Shim HS.
Tetrahedron Lett.
2006,
47:
3835
<A NAME="RG12610ST-4F">4f</A>
Li Z.
Gao Y.
Jiao Z.
Wu N.
Wang DZ.
Yang Z.
Org. Lett.
2008,
10:
5163
<A NAME="RG12610ST-4G">4g</A>
Park HS.
Kwon DW.
Lee K.
Kim YH.
Tetrahedron
Lett.
2008,
49:
1616
<A NAME="RG12610ST-4H">4h</A>
Antoniotti S.
Dunach E.
Tetrahedron Lett.
2009,
50:
2536
<A NAME="RG12610ST-4I">4i</A>
Gooßen LJ.
Ohlmann DM.
Dierker M.
Green Chem.
2010,
12:
197
<A NAME="RG12610ST-4J">4j</A>
Dias LC.
de Castro IBD.
Steil LJ.
Augusto T.
Tetrahedron
Lett.
2006,
47:
213
<A NAME="RG12610ST-4K">4k</A>
Olejniczak T.
Mironowicz A.
Wawrzenczyk C.
Bioorg.
Chem.
2003,
31:
199
<A NAME="RG12610ST-5A">5a</A>
Tietze LF.
Beifuss U.
Angew.
Chem., Int. Ed. Engl.
1993,
32:
131
<A NAME="RG12610ST-5B">5b</A>
Enders D.
Grndal C.
Huttl MRM.
Angew. Chem. Int. Ed.
2007,
46:
1570
<A NAME="RG12610ST-5C">5c</A>
Nicolaou KC.
Chen JS.
Chem.
Soc. Rev.
2009,
38:
2993
<A NAME="RG12610ST-5D">5d</A>
Morten
CJ.
Byers JA.
Van
Dyke AR.
Vilotijevic I.
Jamison TF.
Chem. Soc. Rev.
2009,
38:
3175
<A NAME="RG12610ST-6A">6a</A>
Domino Reactions in Organic Synthesis
Tietze LF.
Brasche G.
Gericke KM.
Wiley-VCH;
Weinheim:
2006.
<A NAME="RG12610ST-6B">6b</A>
Fustero S.
Jimenez D.
Sanchez-Rosello M.
del Pozo C.
J. Am. Chem. Soc.
2007,
129:
6700
<A NAME="RG12610ST-6C">6c</A>
Bi
H.-P.
Liu X.-Y.
Gou F.-R.
Guo L.-N.
Duan X.-H.
Shu X.-Z.
Liang Y.-M.
Angew.
Chem. Int. Ed.
2007,
46:
7068
<A NAME="RG12610ST-6D">6d</A>
Rolfe A.
Young K.
Hanson PR.
Eur.
J. Org. Chem.
2008,
31:
5254
<A NAME="RG12610ST-7A">7a</A>
Kozytska MV.
Dudley GB.
Chem. Commun.
2005,
3047
<A NAME="RG12610ST-7B">7b</A>
Bontemps S.
Gornitzka H.
Bouhadir G.
Miqueu K.
Bourissou D.
Angew.
Chem. Int. Ed.
2006,
45:
1611
<A NAME="RG12610ST-7C">7c</A>
Bontemps S.
Bouhadir G.
Miqueu K.
Bourissou D.
J. Am. Chem. Soc.
2006,
128:
12056
<A NAME="RG12610ST-7D">7d</A>
Tejedor D.
Mendez-Abt G.
Gonzalez-Platas J.
Ramirez MA.
Garca-Tellado F.
Chem.
Commun.
2009,
2368
<A NAME="RG12610ST-8A">8a</A>
Nakamura H.
Shim J.-G.
Yamamoto Y.
J. Am. Chem. Soc.
1997,
119:
8113
<A NAME="RG12610ST-8B">8b</A>
Nakamura H.
Aoyagi K.
Shim J.-G.
Yamamoto Y.
J. Am. Chem. Soc.
2001,
123:
372
<A NAME="RG12610ST-8C">8c</A>
Hili R.
Yudin AK.
Angew. Chem. Int. Ed.
2008,
47:
4188
<A NAME="RG12610ST-8D">8d</A>
Baktharaman S.
Hili R.
Yudin AK.
Aldrichimica
Acta
2008,
41:
109
<A NAME="RG12610ST-8E">8e</A>
Kimura M.
Tamaki T.
Nakata M.
Tohyama K.
Tamaru Y.
Angew.
Chem. Int. Ed.
2008,
120:
5887
<A NAME="RG12610ST-8F">8f</A>
Hili R.
Yudin AK.
J. Am. Chem. Soc.
2009,
131:
16404
<A NAME="RG12610ST-9A">9a</A>
Corey EJ.
Russey WE.
Ortiz de Montellano PR.
J. Am. Chem. Soc.
1966,
88:
4750
<A NAME="RG12610ST-9B">9b</A>
van Tamelen EE.
Willett JD.
Clayton RB.
Lord KE.
J.
Am. Chem. Soc.
1966,
88:
4752
<A NAME="RG12610ST-9C">9c</A>
Neighbors JD.
Beutler JA.
Wiemer DF.
J. Org. Chem.
2005,
70:
925
<A NAME="RG12610ST-9D">9d</A>
Vilotijevic I.
Jamison TF.
Angew. Chem. Int.
Ed.
2009,
48:
5250
<A NAME="RG12610ST-9E">9e</A>
Topczewski JJ.
Callahan MP.
Neighbors JD.
Wiemer DF.
J.
Am. Chem. Soc.
2009,
131:
14630
<A NAME="RG12610ST-10A">10a</A>
Samuel S.-MC.
Gordon WK.
J. Chem. Soc., Perkin Trans. 1
1991,
3225
<A NAME="RG12610ST-10B">10b</A>
Ravelo JL.
Radriguez CM.
Martin VS.
J. Organomet. Chem.
2006,
691:
5326
<A NAME="RG12610ST-11A">11a</A>
Chowdhury S.
Mohan RS.
Scott JL.
Tetrahedron
2007,
63:
2363
<A NAME="RG12610ST-11B">11b</A>
Martins MAP.
Frizzo CP.
Moreira DN.
Zanatta N.
Bonacorso HG.
Chem. Rev.
2008,
108:
2015
<A NAME="RG12610ST-11C">11c</A>
Prechtl MHG.
Scholten JD.
Nuto BAD.
Dupont J.
Curr.
Org. Chem.
2009,
13:
1705
<A NAME="RG12610ST-11D">11d</A>
Sureshkumar M.
Lee C.-K.
J. Mol. Catal. B: Enzym.
2009,
60:
1
<A NAME="RG12610ST-11E">11e</A>
Olivier-Bourbigou H.
Magna L.
Morvan D.
Appl.
Catal., A
2010,
373:
1
<A NAME="RG12610ST-11F">11f</A>
Giernoth R.
Angew. Chem.
Int. Ed.
2010,
49:
2834
<A NAME="RG12610ST-12A">12a</A>
Ionic Liquids in Synthesis
Wasserscheid P.
Welton T.
Wiley-VCH;
Weinheim:
2008.
<A NAME="RG12610ST-12B">12b</A>
Calo V.
Nacci A.
Monopoli A.
Cotugno P.
Angew. Chem. Int. Ed.
2009,
48:
6101
<A NAME="RG12610ST-12C">12c</A>
Gong K.
Wang H.-L.
Luo J.
Liu Z.-L.
J. Heterocycl. Chem.
2009,
46:
1145
<A NAME="RG12610ST-12D">12d</A>
Yavari I.
Kowsari E.
Mol. Diversity
2009,
13:
519
<A NAME="RG12610ST-12E">12e</A>
Yadav LDS.
.
Srivastava VP.
Tetrahedron Lett.
2010,
51:
739
<A NAME="RG12610ST-13A">13a</A>
Yadav LDS.
Patel R.
Rai VK.
Srivastava VP.
Tetrahedron Lett.
2007,
48:
7793
<A NAME="RG12610ST-13B">13b</A>
Yadav LDS.
Patel R.
Srivastava VP.
Synlett
2008,
583
<A NAME="RG12610ST-13C">13c</A>
Yadav LDS.
Singh S.
Rai VK.
Tetrahedron Lett.
2009,
50:
2208
<A NAME="RG12610ST-13D">13d</A>
Yadav LDS.
Singh S.
Rai VK.
Green Chem.
2009,
11:
878
<A NAME="RG12610ST-13E">13e</A>
Yadav LDS.
Kapoor R.
.
Synlett
2009,
1055
<A NAME="RG12610ST-13F">13f</A>
Yadav LDS.
Rai VK.
Singh S.
Singh P.
Tetrahedron
Lett.
2010,
51:
1662
<A NAME="RG12610ST-14">14</A>
Yadav LDS.
Yadav S.
Rai VK.
Tetrahedron
2005,
61:
10013
<A NAME="RG12610ST-15">15</A>
General Procedure
for the Synthesis of α-Mercapto-γ-lactones 4
To
a stirred solution of 2-methyl-2-phenyl-1,3-oxathiolan-5-one (2, 1 mmol) in [Bmim]OH-H2O
(0.5-1 mL, 4:1), epoxide 1 (1
mmol) was added dropwise and stirred at r.t. for 30 min, then the
reaction mixture was stirred at 50 ˚C for 6-15
h (Table
[¹]
). After
completion of reaction (monitored by TLC), the reaction mixture
was cooled to r.t., diluted with H2O (5 mL), and extracted
with EtOAc (3 × 5 mL), dried over anhyd
Na2SO4, filtered, and evaporated to dryness.
A
mixture of the crude product 4 and acetophenone
thus obtained was subjected to silica gel column chromatography using
EtOAc-n-hexane as eluent to
afford an analytically pure sample of 4 and
acetophenone, which was recycled to 2.¹4 After
isolation of the product, the remaining aqueous layer containing
the ionic liquid was washed with Et2O (2 × 5
mL) to remove any organic impurity, dried under vacuum at 90 ˚C
to afford [Bmim]OH, which was used in subsequent
runs without further purification.
Physical
Data of Representative CompoundsCompound 4a (
cis
/
trans
= 60:40)
cis: IR (film): νmax = 2995,
2876, 2554, 1765, 1607, 1583, 1455 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.25
(1 H, m), 2.39 (1 H, ddd, J = 13.2,
6.8, 6.7 Hz), 3.85 (1 H, dd, J = 7.7,
6.7 Hz), 5.28 (1 H, dd, J = 6.9,
6.8 Hz), 7.21-7.32 (m, 5 Harom). ¹³C
NMR (100 MHz, CDCl3-TMS): δ = 41.1,
46.2, 80.1, 127.1, 128.8, 129.1, 140.1, 178.4. MS (EI): m/z = 194 [M+].
Anal. Calcd for C10H10O2S: C, 61.83; H,
5.19. Found: C, 62.2; H, 5.02.
trans:
IR (film): νmax = 2993, 2876, 2558,
1767, 1609, 1582, 1453 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.20
(1 H, m), 2.46 (1 H, ddd, J = 13.2,
6.8, 6.9 Hz), 3.88 (1 H, dd, J = 7.4,
6.9 Hz), 5.05 (1 H, dd, J = 10.3,
6.8 Hz), 7.23-7.36 (m, 5Harom).
Compound 4c
(
cis
/
trans
= 67:33)
cis: IR (film): νmax = 2998,
2875, 2554, 1768, 1605, 1585, 1456 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.25
(1 H, m), 2.39 (1 H, ddd, J = 13.2,
6.8, 6.7 Hz), 3.83 (1 H, dd, J = 7.7,
6.7 Hz), 5.29 (1 H, dd, J = 6.9,
6.8 Hz), 7.21-7.34 (m, 2 Harom,), 7.58-7.61
(m, 2 Harom). ¹³C NMR (100
MHz, CDCl3-TMS): δ = 41.6,
46.9, 81.1, 129.6, 130.2, 132.3, 143.5, 178.5. MS (EI): m/z = 228 [M+],
230 [M + 2+]. Anal.
Calcd for C10H9ClO2S: C, 52.52;
H, 3.97. Found: C, 52.15; H, 4.29.
trans:
IR (film): νmax = 3001, 2876, 2552,
1770, 1609, 1580, 1457 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.20
(1 H, m), 2.46 (1 H, ddd, J = 13.2,
6.8, 6.9 Hz), 3.86 (1 H, dd, J = 7.4,
6.9 Hz), 5.07 (1 H, dd, J = 10.3,
6.8 Hz), 7.23-7.36 (m, 2 Harom), 7.57-7.62
(m, 2 Harom).
<A NAME="RG12610ST-16">16</A>
Isolation of 3a
and 3c and their Conversion into the Corresponding α-Mercapto-γ-lactones
4a and 4c
The procedure followed was the same as described
above for the synthesis of 4 except that
the stirring time in this case was only 25-30 min at r.t.
Purified by silica gel chromatography using EtOAc-n-hexane as eluent to afford an analytically pure
sample of 3a and 3c.
Finally, the intermediate alcohols 3a and 3c (1 mmol) were quantitatively converted
into the corresponding γ-lactones 4a and 4b by stirring at 50 ˚C
in [Bmim]OH-H2O (4:1) for
6.5 h.
Physical Data of Intermediate
Alcohols 3a and 3cCompound 3a (Diastereomeric Mixture = 60:40)
Major:
IR (film): νmax = 3435, 2965, 2878,
1775, 1605, 1581, 1456 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.18
(3 H, s), 2.13-2.17 (2 H, m), 3.99 (1 H, dd, J = 12.0, 7.8
Hz), 4.91 (1 H, dd, J = 7.6,
5.7 Hz), 7.21-7.36 (m, 10Harom). ¹³C
NMR (100 MHz; CDCl3-TMS): δ = 20.8, 37.2,
44.7, 77.2, 98.7, 127.1, 127.8, 128.4, 128.8, 129.1, 129.5, 139.8,
141.1, 177.2. MS (EI): m/z = 314 [M+].
Anal. Calcd for C18H18O3S: C, 68.76;
H, 5.77. Found: C, 68.98; H, 5.40.
Minor: ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.19
(3 H, s), 2.15-2.20 (2 H, m), 3.89 (1 H, t, J = 2.2 Hz),
4.98 (1 H, dd, J = 7.8,
5.7 Hz), 7.21-7.34 (m, 10 Harom).
Compound 3c (Diasteriomeric Mixture = 67:33)
Major:
IR (film): νmax = 3440, 2985, 2876,
1772, 1607, 1584, 1457 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.21
(3 H, s), 2.16-2.20 (2 H, m), 3.92 (1 H, dd, J = 12.1, 7.8
Hz), 4.95 (1 H, dd, J = 7.5,
5.7 Hz), 7.21-7.52 (m, 7 Harom), 7.70-7.90
(m, 2 Harom). ¹³C NMR (100
MHz, CDCl3-TMS): δ = 21.7,
37.4, 44.9, 77.3, 98.6, 127.7, 128.9, 129.2, 129.8, 130.1, 132.2,
139.7, 142.5, 177.3. MS (EI): m/z = 348 [M+],
350 [M + 2+]. Anal.
Calcd for C18H17ClO3S: C, 61.97; H,
4.91. Found: C, 62.20; H, 5.28.
Minor: ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.19
(3 H, s), 2.17-2.22 (2 H, m), 3.89 (1 H, t, J = 2.3 Hz),
4.98 (1 H, dd, J = 7.8,
5.6 Hz), 7.22-7.54 (m, 7 Harom), 7.72 (m, 2 Harom).
<A NAME="RG12610ST-17">17</A>
Brace NO.
J.
Fluorine Chem.
2003,
123:
237