Abstract
Hydroformylation of alkenes can be carried out in short time
and with low syngas pressure under microwave (MW) dielectric heating.
Alkenes, carrying O-, N-, or C-nucleophilic fragments, can be designed
for domino reactions, mainly cyclocondensations. Allyl and homoallyl
alcohols are excellent substrates for cyclizative hydroformylation
to lactols under MW heating. In the presence of NaOAc as an additional
nucleophile, a domino reaction occurs giving 2-acetoxytetrahydrofurans,
suitable to introduce a C-nucleophile on tetrahydrofuran rings through
an oxocarbenium ion. The synthesis of the furanopiperidine substructure
of cyclopamine is described as an application. With alkene amides,
the domino process collapsed to a transient acyliminium ion that
further cyclized with an additional C-nucleophile. To perform domino
hydroformylation Pictet-Spengler or aza-Sakurai reactions,
an autoclave under conventional heating is essential. Syntheses
of (±)-epilupinine and of a homoberberine alkaloid are
reported to illustrate each sequence. Although apparently more versatile,
hydroformylation of alkenes using MW heating is sensitive to the
nature of the nucleophiles present in the substrates, evidencing
that the conventional heating process cannot be completely replaced
by MW irradiation.
Key words
domino reaction - heterocycles - nucleophilic
addition - cyclization - hemiacetals - Pictet-Spengler
reaction
References
<A NAME="RC03410SS-1A">1a </A>
Caddick S.
Fitzmaurice R.
Tetrahedron
2009,
65:
3325
<A NAME="RC03410SS-1B">1b </A>
Jindal R.
Bajaj S.
Curr. Org. Chem.
2008,
12:
836
<A NAME="RC03410SS-1C">1c </A>
Coquerel Y.
Rodriguez J.
Eur. J. Org. Chem.
2008,
1125
<A NAME="RC03410SS-1D">1d </A>
Solinas A.
Taddei M.
Synthesis
2008,
2409
<A NAME="RC03410SS-1E">1e </A>
Hayes BL.
Aldrichimica Acta
2004,
37:
66
<A NAME="RC03410SS-1F">1f </A>
Kappe CO.
Angew. Chem. Int. Ed.
2004,
43:
6250
<A NAME="RC03410SS-2">2 </A>
Kappe CO.
Stadler A.
Microwaves
in Organic and Medicinal Chemistry
Wiley-VCH;
Weinheim:
2005.
p.153
<A NAME="RC03410SS-3">3 </A>
Kappe CO.
Dallinger D.
Nature Rev. Drug Discovery
2006,
5:
51
<A NAME="RC03410SS-4A">4a </A>
Chaudhari RV.
Curr. Opin. Drug
Discovery Dev.
2008,
11:
820
<A NAME="RC03410SS-4B">4b </A>
Breit B.
Top.
Curr. Chem.
2007,
279:
139
<A NAME="RC03410SS-4C">4c </A>
Breit B.
Seiche W.
Synthesis
2001,
1
<A NAME="RC03410SS-5">5 </A>
Petricci E.
Mann A.
Rota A.
Schoenfelder A.
Taddei M.
Org. Lett.
2006,
8:
3725
<A NAME="RC03410SS-6">6 </A>
http://www.cem.com/page163.html.
<A NAME="RC03410SS-7">7 </A>
http://www.anton-paar.com/001/en/60/262.
<A NAME="RC03410SS-8">8 </A>
Petricci E.
Mann A.
Salvadori J.
Taddei M.
Tetrahedron Lett.
2007,
48:
8501
<A NAME="RC03410SS-9">9 </A>
In a 10 mL vial, the gas present under
the reaction conditions is roughly 3 mmol for 1 mmol of substrate.
<A NAME="RC03410SS-10A">10a </A>
Dübon P.
Farwick A.
Helmchen G.
Synlett
2009,
1413
<A NAME="RC03410SS-10B">10b </A>
Kemme ST.
Smejkal T.
Breit B.
Adv. Synth. Catal.
2008,
350:
989
<A NAME="RC03410SS-10C">10c </A>
Chiou W.-H.
Mizutani N.
Ojima I.
J.
Org. Chem.
2007,
72:
1871
<A NAME="RC03410SS-10D">10d </A>
Padwa A.
Bur SC.
Tetrahedron
2007,
63:
5341
<A NAME="RC03410SS-10E">10e </A>
Teoh E.
Campi EM.
Jackson WR.
Robinson AJ.
Chem.
Commun.
2002,
978
<A NAME="RC03410SS-10F">10f </A>
Hoffmann RW.
Brückner D.
Gerusz VJ.
Heterocycles
2000,
52:
121
<A NAME="RC03410SS-10G">10g </A>
Bergmann DJ.
Campi EM.
Jackson WR.
Patti AF.
Chem.
Commun.
1999,
1279
<A NAME="RC03410SS-10H">10h </A>
Eilbracht P.
Rzychon LB.
Kranemann CL.
Rische T.
Roggenbuck R.
Schmidt A.
Chem. Rev.
1999,
99:
3329
<A NAME="RC03410SS-10I">10i </A>
Ojima I.
Tzamarioudaki M.
Eguchi M.
J. Org.
Chem.
1995,
60:
7078
<A NAME="RC03410SS-11A">11a </A>
Schmidt B.
Biernat A.
Synlett
2007,
2375
<A NAME="RC03410SS-11B">11b </A>
Morinaka BI.
Skepper CK.
Molinski TF.
Org. Lett.
2007,
9:
1975
<A NAME="RC03410SS-12A">12a </A>
da Silva JG.
Barros HJV.
dos Santos EN.
Gusevskaya EV.
Appl. Catal.,
A
2006,
309:
169
<A NAME="RC03410SS-12B">12b </A>
Nozaki K.
Li W.-G.
Horiuchi T.
Takaya H.
Tetrahedron Lett.
1997,
38:
4611
<A NAME="RC03410SS-12C">12c </A> For stereoselective hydroformylation
of allylic alcohol derivatives, see:
Breit B.
Acc.
Chem. Res.
2003,
36:
264
<A NAME="RC03410SS-13">13 </A>
Heretsch P.
Rabe S.
Giannis A.
Org.
Lett.
2009,
11:
5410
<A NAME="RC03410SS-14">14 </A>
Larsen CH.
Ridgway BH.
Shaw JT.
Woerpel KA.
J.
Am. Chem. Soc.
1999,
121:
12208
<A NAME="RC03410SS-15">15 </A>
Du Y.
Linhardt RJ.
Vlahov IR.
Tetrahedron
1998,
54:
9913
<A NAME="RC03410SS-16">16 </A>
Boukouvalas J.
Radu I.-I.
Tetrahedron Lett.
2007,
48:
2971
<A NAME="RC03410SS-17A">17a </A>
D’Aniello F.
Taddei M.
J.
Org. Chem.
1992,
57:
5247
<A NAME="RC03410SS-17B">17b </A>
D’Aniello F.
Mattii D.
Taddei M.
Synlett
1993,
119
<A NAME="RC03410SS-18">18 </A>
Giannis A.
Heretsch P.
Sarli V.
Stößel A.
Angew. Chem. Int.
Ed.
2009,
48:
7911
For some recent literature, see:
<A NAME="RC03410SS-19A">19a </A>
Airiau E.
Spangenberg T.
Girard N.
Breit B.
Mann A.
Org.
Lett.
2010,
12:
528
<A NAME="RC03410SS-19B">19b </A>
Spangenberg T.
Breit B.
Mann A.
Org.
Lett.
2009,
11:
261
<A NAME="RC03410SS-19C">19c </A>
Spangenberg T.
Airiau E.
BuiTheThuong M.
Donnard M.
Billet M.
Mann A.
Synlett
2008,
2859
<A NAME="RC03410SS-19D">19d </A>
Vieira TO.
Alper H.
Chem. Commun.
2007,
2710
<A NAME="RC03410SS-19E">19e </A>
Wittmann K.
Wisniewski W.
Mynott R.
Leitner W.
Kranemann CL.
Rische T.
Eilbracht P.
Sander S.
Ernsting JM.
Chem.
Eur. J.
2001,
7:
4584
<A NAME="RC03410SS-20">20 </A>
Royer J.
Bonin M.
Micouin L.
Chem.
Rev.
2004,
104:
2311
<A NAME="RC03410SS-21A">21a </A>
Youn SW.
Org. Prep. Proced. Int.
2006,
38:
205
<A NAME="RC03410SS-21B">21b </A>
Larghi EL.
Kaufman TS.
Synthesis
2006,
187
<A NAME="RC03410SS-21C">21c </A>
Larghi EL.
Amongero M.
Bracca ABJ.
Kaufman TS.
ARKIVOC
2005,
(xii):
98
<A NAME="RC03410SS-22A">22a </A>
Kulkarni A.
Abid M.
Török B.
Huang X.
Tetrahedron
Lett.
2009,
50:
1791
<A NAME="RC03410SS-22B">22b </A>
Kusurkar RS.
Alkobati NAH.
Gokule AS.
Puranik VG.
Tetrahedron
2008,
64:
1654
<A NAME="RC03410SS-22C">22c </A>
Liu F.
You Q.-D.
Synth. Commun.
2007,
37:
3933
<A NAME="RC03410SS-22D">22d </A>
Lesma G.
Danieli B.
Lodroni F.
Passarella D.
Sacchetti A.
Silvani A.
Comb. Chem. High Throughput
Screening
2006,
9:
691
<A NAME="RC03410SS-22E">22e </A>
Kuo F.-M.
Tseng M.-C.
Yen Y.-H.
Chu Y.-H.
Tetrahedron
2004,
60:
12075
<A NAME="RC03410SS-22F">22f </A>
Campiglia P.
Gomez-Monterrey I.
Lama T.
Novellino E.
Grieco P.
Mol.
Diversity
2004,
8:
427
<A NAME="RC03410SS-22G">22g </A>
Wu C.-Y.
Sun C.-M.
Synlett
2002,
4826
<A NAME="RC03410SS-23A">23a </A>
Bondzic BP.
Eilbracht P.
Org.
Biomol. Chem.
2008,
6:
4059
<A NAME="RC03410SS-23B">23b </A>
Airiau E.
Girard N.
Mann A.
Salvadori J.
Taddei M.
Org. Lett.
2009,
11:
5314
<A NAME="RC03410SS-24">24 </A>
Wakchaure PB.
Easwar S.
Argade NP.
Synthesis
2009,
1667 ; and references cited therein
<A NAME="RC03410SS-25">25 </A>
Itoh T.
Nagata K.
Yokoya M.
Miyazaki M.
Kameoka K.
Nakamura S.
Ohsawa A.
Chem.
Pharm. Bull.
2003,
51:
951
<A NAME="RC03410SS-26">26 </A>
Airiau E.
Spangenberger T.
Girard N.
Schoenfelder A.
Salvadori J.
Taddei M.
Mann A.
Chem.
Eur. J.
2008,
14:
10938