Abstract
(+)-Sclareolide has been synthesised from (+)-sclareol oxide
in one step in high yield, by treatment with peroxy acids under very
mild conditions. The reaction pathway does not follow the usual
oxidative cleavage of the double bond of (+)-sclareol oxide,
but the key intermediate is a five-membered ring hemiketal. The
direct conversion of a six-membered cyclic enol ether into a γ-lactone
is described for the first time.
Key words
cyclic enol ethers - γ-lactones - ring
contraction - oxidative rearrangement - peroxy acids
References and Notes
<A NAME="RG19410ST-1A">1a </A> First
synthesis:
Ruzicka L.
Janot MM.
Helv. Chim. Acta
1931,
14:
645
<A NAME="RG19410ST-1B">1b </A> Structure elucidation:
Ruzicka L.
Seidel CF.
Engel LL.
Helv. Chim. Acta
1942,
25:
621
<A NAME="RG19410ST-2">2 </A>
Kaneko H.
Agric.
Biol. Chem.
1971,
35:
1461 ;
see also ref. 4
<A NAME="RG19410ST-3A">3a </A>
Stoll M.
Hinder M.
Helv.
Chim. Acta
1950,
33:
1251
<A NAME="RG19410ST-3B">3b </A>
Hinder M.
Stoll M.
Helv. Chim. Acta
1950,
1308
<A NAME="RG19410ST-4">4 </A>
Ohloff G. In Fragrance Chemistry
Theimer ET.
Academic Press;
New
York:
1982.
p.535
<A NAME="RG19410ST-5">5 </A>
Fráter G.
Bajgrowicz JA.
Kraft P.
Tetrahedron
1998,
54:
7633
<A NAME="RG19410ST-6">6 </A>
Schumacher JN. inventors; US 2,905,576.
; Chem. Abstr. 1960 , 54 , 13261
<A NAME="RG19410ST-7">7 </A>
Rocabayera X,
Figueras S,
Segret R, and
Piera E. inventors;
WO 2008095534.
; Chem. Abstr. 2008 , 149 , 266054
<A NAME="RG19410ST-8">8 </A>
Kim SH.
Danilenko M.
Kim TS.
Br.
J. Pharmacol.
2008,
155:
814
<A NAME="RG19410ST-9">9 </A>
Boggs A,
Trias J, and
Hecker S. inventors; WO 9,624,684.
; Chem. Abstr. 1996 , 125 , 238654
<A NAME="RG19410ST-10">10 </A>
Nozoe S.
Masuda J.
Takahashi A.
Kanou M.
Tanaka K.
Wakayama T.
Koike N.
Uchida T.
Nagata T.
Segawa T.
Tanka S.
, ; Chem. Abstr. 1999 , 131 , 307085
<A NAME="RG19410ST-11">11 </A>
Subbiah V. inventors; WO 9,963,978.
; Chem. Abstr.
1999 , 132 , 18772
<A NAME="RG19410ST-12">12 </A>
Gerke T,
Sättler A, and
Müllner S. inventors; WO 2002030385.
; Chem. Abstr. 2002 , 136 , 299517
<A NAME="RG19410ST-13">13 </A>
Oh S.
Jeong IH.
Shin W.-S.
Lee S.
Bioorg. Med. Chem. Lett.
2003,
13:
2009
See, as examples, the syntheses
from ambrein:
<A NAME="RG19410ST-14A">14a </A>
Lederer E.
Mercier D.
Experientia
1947,
3:
188
And from labdanolic acid:
<A NAME="RG19410ST-14B">14b </A>
de Pascual Teresa J.
Urones JG.
Montaña A.
Basabe P.
Tetrahedron
Lett.
1985,
26:
5717
For recent papers, see:
<A NAME="RG19410ST-15A">15a </A>
Upar KB.
Mishra SJ.
Nalawade SP.
Singh SA.
Khandare RP.
Bhat SV.
Tetrahedron: Asymmetry
2009,
20:
1637
<A NAME="RG19410ST-15B">15b </A>
Snowden
RL.
Chemistry & Biodiversity
2008,
5:
958
Recent examples:
<A NAME="RG19410ST-16A">16a </A>
Wei J,
Wu Y,
Shi X, and
Zhang Y. inventors;
CN 1,683,352.
; Chem. Abstr. 2006 , 145 , 145522
<A NAME="RG19410ST-16B">16b </A>
Igarashi K,
Takizawa S,
Higaki N, and
Hagiwara H. inventors; JP 2007222110.
; Chem. Abstr. 2007 , 147 , 299478
<A NAME="RG19410ST-17">17 </A> Recent example:
Álvarez-Manzaneda E.
Chahboun R.
Cabrera E.
Álvarez E.
Haïdour A.
Ramos JM.
Álvarez-Manzaneda R.
Hmamouchi M.
Es-Samti H.
Chem. Commun.
2009,
592
<A NAME="RG19410ST-18A">18a </A>
Barrero AF.
Altarejos J.
Álvarez-Manzaneda EJ.
Ramos JM.
Salido S.
J.
Org. Chem.
1996,
61:
2215
<A NAME="RG19410ST-18B">18b </A>
Barrero AF.
Altarejos J.
Álvarez-Manzaneda EJ.
Ramos JM.
Salido S.
Tetrahedron
1993,
49:
6251
<A NAME="RG19410ST-18C">18c </A>
Barrero AF.
Altarejos J.
Álvarez-Manzaneda EJ.
Ramos JM.
Salido S.
Tetrahedron
1993,
49:
9525
<A NAME="RG19410ST-18D">18d </A>
Barrero AF,
Altarejos J,
Álvarez-Manzaneda EJ, and
Ramos JM. inventors; ES 2,044,780.
; Chem. Abstr. 1994 , 120 , 299025
<A NAME="RG19410ST-18E">18e </A>
Barrero AF,
Altarejos J, and
Salido S. inventors; ES 2,069,469.
; Chem. Abstr. 1995 , 123 , 257086
<A NAME="RG19410ST-18F">18f </A>
Barrero AF.
Sánchez JF.
Álvarez-Manzaneda EJ.
Altarejos J.
Muñoz M.
Haïdour A.
Tetrahedron
1994,
50:
6653 ; see also ref. 23b
<A NAME="RG19410ST-19">19 </A>
Castro JM.
Salido S.
Altarejos J.
Nogueras M.
Sánchez A.
Tetrahedron
2002,
58:
5941
<A NAME="RG19410ST-20A">20a </A>
Cocker JD.
Halsall TG.
Bowers A.
J. Chem.
Soc.
1956,
4259
<A NAME="RG19410ST-20B">20b </A>
Cocker JD.
Halsall TG.
J.
Chem. Soc.
1956,
4262
<A NAME="RG19410ST-21">21 </A>
Acid traces present in commercial
CDCl3 were capable of transforming 5 into 6 during the NMR experiments. Previous
neutralisation of the deuterated solvent was necessary.
<A NAME="RG19410ST-22">22 </A>
Gerke T, and
Bruns K. inventors; DE 3,942,358.
; Chem. Abstr.
1991 , 115 , 136446
Other oxidants normally yield mixtures
of products 7 and 1 from 5 /6 .
See as examples ref. 1a and:
<A NAME="RG19410ST-23A">23a </A>
Zahra J.-P.
Chauvet F.
Coste-Manière I.
Martres P.
Perfetti P.
Waegell B.
Bull. Soc. Chim. Fr.
1997,
134:
1001
<A NAME="RG19410ST-23B">23b </A>
Barrero AF.
Álvarez-Manzaneda EJ.
Altarejos J.
Salido S.
Ramos JM.
Tetrahedron
1993,
49:
10405
<A NAME="RG19410ST-24A">24a </A>
Urones JG.
Basabe P.
Marcos IS.
Díez D.
Sexmero MJ.
Peral MH.
Broughton HB.
Tetrahedron
1992,
48:
10389
<A NAME="RG19410ST-24B">24b </A>
González AG.
Francisco CG.
Freire R.
Hernández R.
Salazar JA.
Suárez E.
Tetrahedron Lett.
1976,
1897
<A NAME="RG19410ST-25">25 </A> One occurrence for compound 11 has been found in the literature:
Giles JA.
Schumacher JN.
Tetrahedron
1961,
14:
246 ; compounds 8 -10 have never been described before
<A NAME="RG19410ST-26">26 </A> Epimerization at C-8 of 1 is well known. See:
Quideau S.
Lebon M.
Lamidey A.-M.
Org.
Lett.
2002,
4:
3975
<A NAME="RG19410ST-27">27 </A>
Peng S.
Qing F.-L.
Li Y.-Q.
Hu C.-M.
J. Org. Chem.
2000,
65:
694
<A NAME="RG19410ST-28">28 </A>
Li X.
Wang F.
Zhang H.
Wang C.
Song G.
Synth. Commun.
1996,
26:
1613
<A NAME="RG19410ST-29">29 </A>
Castro JM,
Salido S,
Altarejos J,
Nogueras M, and
Sánchez A. inventors; ES 2,238,003.
; Chem. Abstr. 2006 , 145 , 397666
<A NAME="RG19410ST-30">30 </A>
In ref. 23a, V is
postulated in a related reaction mechanism.
<A NAME="RG19410ST-31">31 </A>
Dehal SS.
Marples BA.
Stretton RJ.
Tetrahedron Lett.
1978,
25:
2183
<A NAME="RG19410ST-32A">32a </A>
Hall SS.
Chernoff HC.
Chem. Ind.
1970,
27:
896
<A NAME="RG19410ST-32B">32b </A>
Armstrong A.
Ashraff C.
Chung H.
Murtagh L.
Tetrahedron
2009,
65:
4490 ; note that the oxidative rearrangement of
the 3,4-dihydropyrans described in these articles leads to tetrahydrofuranones,
not to γ-lactones
<A NAME="RG19410ST-33">33 </A>
Barton DHR.
Parekh SI.
Taylor DK.
Tse C.-I.
Tetrahedron
Lett.
1994,
35:
5801