Abstract
The first use of Cd²+ as catalyst
for a facile three-component coupling of an aldehyde, alkyne, and
amine has been demonstrated to synthesize propargylamines under
microwave irradiation in chlorobenzene without the use of a co-catalyst
or activator in the absence of inert atmosphere. This method has
been proved to be applicable to a wide range of substrates.
Key words
transition-metal catalyst - multicomponent reaction - aldehydes - A³ coupling - propargylamines
References and Notes
<A NAME="RD28610ST-1A">1a </A>
D’Souza DM.
Muller TJJ.
Chem. Soc. Rev.
2007,
36:
1095
<A NAME="RD28610ST-1B">1b </A>
Multicomponent
Reactions
Zhu J.
Bienayme H.
Wiley;
Weinheim:
2005.
<A NAME="RD28610ST-2A">2a </A>
Dyker G.
Angew. Chem. Int. Ed.
1999,
38:
1698
<A NAME="RD28610ST-2B">2b </A>
Naota T.
Takaya H.
Murahashi SI.
Chem.
Rev.
1998,
98:
2599
<A NAME="RD28610ST-2C">2c </A>
Konishi M.
Ohkuma H.
Tsuno T.
Oki T.
VanDuyne GD.
Clardy J.
J. Am. Chem. Soc.
1990,
112:
3715
<A NAME="RD28610ST-2D">2d </A>
Naoi M.
Maruyama W.
Youdim MBH.
Yu P.
Boulton AA.
Inflammopharmacology
2003,
11:
175
<A NAME="RD28610ST-3A">3a </A>
Zani L.
Bolm C.
Chem.
Commun.
2006,
4263
<A NAME="RD28610ST-3B">3b </A>
Wei C.
Li Z.
Li C.-J.
Synlett
2004,
1472
<A NAME="RD28610ST-4A">4a </A>
Wakefield BJ. In
Organolithium Methods in Organic Synthesis
Academic
Press;
London:
1988.
Chap. 3.
p.32
<A NAME="RD28610ST-4B">4b </A>
Wakefield BJ.
Organomagnesium Methods
in Organic Synthesis
Academic Press;
London:
1995.
Chap.
3.
p.46
<A NAME="RD28610ST-5A">5a </A>
Harada T.
Fujiwara T.
Iwazaki K.
Oku A.
Org.
Lett.
2000,
2:
1855
<A NAME="RD28610ST-5B">5b </A>
Rosas N.
Sharma P.
Alvarez C.
Gomez E.
Gutierrez Y.
Mendez M.
Toscano RA.
Maldonado LA.
Tetrahedron Lett.
2003,
44:
8019
<A NAME="RD28610ST-5C">5c </A>
Ding C.-H.
Chen D.-D.
Luo Z.-B.
Dai L.-X.
Hou X.-L.
Synlett
2006,
1272
<A NAME="RD28610ST-6A">6a </A>
Chen W.-W.
Nauyen RV.
Li C.-J.
Tetrahedron Lett.
2009,
50:
2895
<A NAME="RD28610ST-6B">6b </A>
Sreedhar B.
Suresh Kumar A.
Reddy PS.
Tetrahedron Lett.
2010,
51:
1891
<A NAME="RD28610ST-7A">7a </A>
Lee KY.
Lee CG.
Na JE.
Kim JN.
Tetrahedron Lett.
2005,
46:
69
<A NAME="RD28610ST-7B">7b </A>
Zani L.
Alesi S.
Cozzi PG.
Bolm C.
J. Org. Chem.
2006,
71:
1558
<A NAME="RD28610ST-7C">7c </A>
Ramu E.
Varala R.
Sreelatha N.
Adapa SR.
Tetrahedron Lett.
2007,
48:
7184
<A NAME="RD28610ST-7D">7d </A>
Kantam ML.
Balasubrahmanyam V.
Kumar KBS.
Venkanna GT.
Tetrahedron
Lett.
2007,
48:
7332
<A NAME="RD28610ST-8A">8a </A>
Shi L.
Tu Y.-Q.
Wang M.
Zhang F.-M.
Fan C.-A.
Org.
Lett.
2004,
6:
1001
<A NAME="RD28610ST-8B">8b </A>
Huma HZS.
Halder R.
Karla SS.
Das J.
Iqbal J.
Tetrahedron Lett.
2002,
43:
6485
<A NAME="RD28610ST-8C">8c </A>
Kabalka GW.
Wang L.
Pagni RM.
Synlett
2001,
676
<A NAME="RD28610ST-8D">8d </A>
Wei C.
Li C.-J.
J. Am. Chem. Soc.
2002,
124:
5638
<A NAME="RD28610ST-8E">8e </A>
Wei C.
Mague JT.
Li CJ.
Proc.
Natl. Acad. Sci. U.S.A.
2004,
101:
5749
<A NAME="RD28610ST-8F">8f </A>
Gommarman N.
Koradin C.
Polborn K.
Knochel P. Angew. Chem. Int. Ed.
2003,
42:
5763
<A NAME="RD28610ST-8G">8g </A>
Colombo F.
Benaglia M.
Orlandi S.
Usuelli F.
J. Mol. Catal. A: Chem.
2006,
260:
128
<A NAME="RD28610ST-8H">8h </A>
Gommermann N.
Knochel P.
Chem. Eur. J.
2006,
12:
4380
<A NAME="RD28610ST-8I">8i </A>
Bisai A.
Singh VK.
Org. Lett.
2006,
8:
2405
<A NAME="RD28610ST-8J">8j </A>
Li P.
Wang L.
Tetrahedron
2007,
63:
5455
<A NAME="RD28610ST-8K">8k </A>
Park SB.
Alper H.
Chem. Commun.
2005,
1315
<A NAME="RD28610ST-8L">8l </A>
Choudary BM.
Sridhar C.
Kantam ML.
Sreedhar B.
Tetrahedron Lett.
2004,
45:
7319
<A NAME="RD28610ST-8M">8m </A>
Wang M.
Li P.
Wang L.
Eur.
J. Org. Chem.
2008,
2255
<A NAME="RD28610ST-8N">8n </A>
Sreedhar B.
Reddy PS.
Krishna CSV.
Babu PV.
Tetrahedron
Lett.
2007,
48:
7882
<A NAME="RD28610ST-8O">8o </A>
Likhar PR.
Roy S.
Roy M.
Subhas MS.
Kantam ML.
De R L.
Synlett
2007,
2301
<A NAME="RD28610ST-8P">8p </A>
Kantam ML.
Yadav J.
Laha S.
Jha S.
Synlett
2009,
1791
<A NAME="RD28610ST-8Q">8q </A>
Kantam ML.
Laha S.
Yadav J.
Bhargava S.
Tetrahedron Lett.
2008,
49:
3083
<A NAME="RD28610ST-8R">8r </A>
Kidwai M.
Bansal V.
Mishra NK.
Kumar A.
Mozumdar S.
Synlett
2007,
1581
<A NAME="RD28610ST-8S">8s </A>
Aliaga MJ.
Ramon DJ.
Yus M.
Org. Biomol. Chem.
2010,
8:
43
<A NAME="RD28610ST-8T">8t </A>
Patil MK.
Keller M.
Reddy BM.
Pale P.
Sommer J.
Eur.
J. Org. Chem.
2008,
4440
<A NAME="RD28610ST-9">9 </A>
Li CJ.
Wei C.
Chem. Commun.
2002,
268
<A NAME="RD28610ST-10A">10a </A>
Wei C.
Li Z.
Li C.-J.
Org. Lett.
2003,
5:
4473
<A NAME="RD28610ST-10B">10b </A>
Li Z.
Wei C.
Chen L.
Varma RS.
Li C.-J.
Tetrahedron Lett.
2004,
45:
2443
<A NAME="RD28610ST-10C">10c </A>
Reddy KM.
Babu NS.
Prasad PSS.
Lingaiah N.
Tetrahedron
Lett.
2006,
47:
7563
<A NAME="RD28610ST-10D">10d </A>
Zhang X.
Corma A.
Angew. Chem. Int. Ed.
2008,
47:
4358
<A NAME="RD28610ST-10E">10e </A>
Li P.
Wang L.
Zhang Y.
Wang M.
Tetrahedron Lett.
2008,
49:
6650
<A NAME="RD28610ST-10F">10f </A>
Yan W.
Wang R.
Xu Z.
Xu J.
Lin L.
Shen Z.
Zhou Y.
J. Mol. Catal. A: Chem.
2006,
255:
81
<A NAME="RD28610ST-10G">10g </A>
Wang S.
He X.
Song L.
Wang Z.
Synlett
2009,
447
<A NAME="RD28610ST-11A">11a </A>
Zhang Y.
Li P.
Wang M.
Wang L.
J. Org. Chem.
2009,
74:
4364
<A NAME="RD28610ST-11B">11b </A>
Jadav JS.
Reddy BVS.
Gopal
AVH.
Patil KS.
Tetrahedron Lett.
2009,
50:
3993
<A NAME="RD28610ST-12A">12a </A>
Fischer C.
Carreira EM.
Org.
Lett.
2001,
3:
4319
<A NAME="RD28610ST-12B">12b </A>
Sakaguchi S.
Kubo T.
Ishii Y.
Angew.
Chem. Int. Ed.
2001,
40:
2534
<A NAME="RD28610ST-12C">12c </A>
Sakaguchi S.
Mizuta T.
Furuwan M.
Kubo T.
Ishii Y.
Chem.
Commun.
2004,
1638
<A NAME="RD28610ST-13A">13a </A>
Wei C.
Li C.-J.
J.
Am. Chem. Soc.
2003,
125:
9584
<A NAME="RD28610ST-13B">13b </A>
Lo VK.-Y.
Liu Y.
Wong M.-K.
Che C.-M.
Org. Lett.
2006,
8:
1529
<A NAME="RD28610ST-13C">13c </A>
Kantam ML.
Prakash BV.
Reddy CRV.
Sreedhar B.
Synlett
2005,
2329
<A NAME="RD28610ST-14">14 </A>
Hua LP.
Lei W.
Chin. J. Chem.
2005,
23:
1076
<A NAME="RD28610ST-15">15 </A>
Namitharan K.
Pitchumani K.
Eur. J. Org. Chem.
2010,
411
<A NAME="RD28610ST-16A">16a </A>
Leadbeater NE.
Torenius HM.
Tye H.
Mol. Diversity
2003,
7:
135
<A NAME="RD28610ST-16B">16b </A>
Sreedhar B.
Reddy PS.
Prakash BV.
Ravindra A.
Tetrahedron
Lett.
2005,
46:
7019
<A NAME="RD28610ST-17A">17a </A>
Loupy A. In Microwaves
in Organic Synthesis
2nd ed.:
Wiley-VCH;
Weinheim:
2006.
<A NAME="RD28610ST-17B">17b </A>
Caddick S.
Fitzmaurice R.
Tetrahedron
2009,
65:
3325
<A NAME="RD28610ST-17C">17c </A>
Dallinger D.
Kappe CO.
Chem. Rev.
2007,
107:
2563
<A NAME="RD28610ST-17D">17d </A>
Kappe CO.
Angew. Chem. Int. Ed.
2004,
43:
6250
<A NAME="RD28610ST-17E">17e </A>
Kappe
CO.
Stadler A. In Microwaves in Organic and Medicinal Chemistry
Wiley-VCH;
Weinheim:
2005.
p.182
<A NAME="RD28610ST-17F">17f </A>
Shore G.
Morin S.
Organ MG.
Angew.
Chem. Int. Ed.
2006,
45:
276
<A NAME="RD28610ST-17G">17g </A>
Comer E.
Organ MG.
J. Am. Chem. Soc.
2005,
127:
8160
<A NAME="RD28610ST-18A">18a </A>
Raghuvanshi DS.
Singh KN.
ARKIVOC
2010,
(x):
305
<A NAME="RD28610ST-18B">18b </A>
Singh KN.
Singh SK.
ARKIVOC
2009,
(xiii):
153
<A NAME="RD28610ST-18C">18c </A>
Singh SK.
Singh KN.
J.
Heterocycl. Chem.
2010,
47:
194
<A NAME="RD28610ST-18D">18d </A>
Raghuvanshi DS.
Singh KN.
J.
Heterocycl. Chem
2010,
47:
1323
<A NAME="RD28610ST-19A">19a </A>
Narsaiah AV.
Basak AK.
Nagaiah K.
Synthesis
2004,
1253
<A NAME="RD28610ST-19B">19b </A>
Saito M.
Nakajima M.
Hashimoto S.
Chem.
Commun.
2000,
1851
<A NAME="RD28610ST-20">20 </A>
General Procedure
for the Synthesis of Propargylamines
Aldehyde (1 mmol),
amine (1.1 mmol), alkyne (1.2 mmol), CdI2 (7 mol%),
and chlorobenzene (2 mL) were placed in a sealed pressure-regulation
10 mL pressurized vial with ‘snap-on’ cap, and
the mixture was irradiated in a single-mode microwave synthesis
system at 300 W and 130 ˚C for 7-8 min. After
completion of the reaction (as monitored by TLC), the solvent was
evaporated under vacuum. Water (20 mL) was added to the reaction
mixture, and the product was extracted with EtOAc (3 × 10
mL). The combined organic phases were dried over anhyd MgSO4 ,
filtered, and the solvent was evaporated under vacuum. The residue
was purified by column chromatography on silica gel (EtOAc-hexane, 1:9)
to afford the pure propargylamines. Representative Data
4-(1,3-Diphenylprop-2-ynyl)morpholine (4a)
FT-IR
(KBr): 2935, 2756, 1590, 1490, 1451, 1319, 1152, 757, 694 cm-¹ . ¹ H
NMR (300 MHz, CDCl3 ): δ = 7.61
(d, J = 7.2
Hz, 2 H), 7.49 (m, 2 H), 7.39-7.25 (m, 6 H), 4.78 (s, 1
H), 3.76-3.72 (m, 4 H), 2.64-2.61 (m, 4 H) ppm. ¹³ C
NMR (75 MHz, CDCl3 ): δ = 137.7,
131.7, 128.5, 128.2, 128.3, 128.0, 127.7, 122.9, 88.4, 84.9, 67.1,
62.0, 49.8. Anal. Calcd for C19 H19 NO: C, 82.28;
H, 6.90; N, 5.05. Found: C, 82.32; H, 6.82; N, 5.12.
<A NAME="RD28610ST-21">21 </A>
Barr D.
Edwards AJ.
Raithby PR.
Rennie M.-A.
Verhorevoort K.
Wright DS.
Chem.
Commun.
1994,
1627