Abstract
The first example of copper-catalyzed intramolecular N-arylation
of hydroxamic acid derivatives is presented. Based on this transformation
a new method for the synthesis of N -alkoxyindol-2-ones
from 2-(2-bromoaryl)acetylhydroxamates has been developed. The reaction
conditions tolerate standard hydroxyl protecting groups on the hydroxylamine
moiety and are also applicable for the synthesis of six-membered N -alkoxybenzolactams.
Key words
copper - arylation - cyclization - lactams - hydoxamic acids
References and Notes
<A NAME="RD16811ST-1">1 </A>
Henmi T.
Sakamoto T.
Kikugawa Y.
Heterocycles
1997,
44:
157
<A NAME="RD16811ST-2">2 </A>
Kikugawa Y.
Shimada M.
Matsumoto K.
Heterocycles
1994,
37:
293
<A NAME="RD16811ST-3">3 </A>
Pedras MSC.
Chumala PB.
Suchy M.
Phytochemistry
2003,
64:
949
<A NAME="RD16811ST-4">4 </A>
Kitajima M.
Nakamura T.
Kogure N.
Ogawa M.
Mitsuno Y.
Ono K.
Yano S.
Aimi N.
Takayama H.
J.
Nat. Prod.
2006,
69:
715
<A NAME="RD16811ST-5A">5a </A>
Kato H.
Yoshida T.
Tokue T.
Nojiri Y.
Hirota H.
Ohta T.
Williams RM.
Tsukamoto S.
Angew.
Chem. Int. Ed.
2007,
46:
2254
<A NAME="RD16811ST-5B">5b </A>
Tsukamoto S.
Kato H.
Samizo M.
Nojiri Y.
Onuki H.
Hirota H.
Ohta T.
J. Nat. Prod.
2008,
71:
2064
<A NAME="RD16811ST-6A">6a </A>
Bouerat L.
Fensholdt J.
Liang X.
Havez S.
Nielsen SF.
Hansen JR.
Bolvig S.
Andersson C.
J.
Med. Chem.
2005,
48:
5412
<A NAME="RD16811ST-6B">6b </A>
Bouerat LME,
Fensholdt J,
Nielsen SF,
Liang X,
Havez SE,
Andersson EC,
Jensen L, and
Hansen JR. inventors; WO 2005058309.
; Chem. Abstr . 2005 , 143 , 97259
<A NAME="RD16811ST-7">7 </A>
Parkes KEB.
Ermert P.
Fässler J.
Ives J.
Martin JA.
Merrett JH.
Obrecht D.
Williams G.
Klumpp K.
J. Med. Chem.
2003,
46:
1153
<A NAME="RD16811ST-8">8 </A>
El-Faham A.
Albericio F.
Eur. J. Org. Chem.
2009,
1499
<A NAME="RD16811ST-9A">9a </A>
Di Carlo FJ.
J. Am. Chem. Soc.
1944,
66:
1420
<A NAME="RD16811ST-9B">9b </A>
Wright WB.
Collins KH.
J.
Am. Chem. Soc.
1956,
78:
221
<A NAME="RD16811ST-9C">9c </A>
Somei M.
Sato H.
Kaneko C.
Heterocycles
1983,
20:
1797
<A NAME="RD16811ST-9D">9d </A>
Kende AS.
Thurston J.
Synth. Commun.
1990,
20:
2133
<A NAME="RD16811ST-10">10 </A>
Neset SM.
Benneche T.
Undheim K.
Acta
Chem. Scand.
1993,
47:
1141
<A NAME="RD16811ST-11A">11a </A>
Kikugawa Y.
Kawase M.
J.
Am. Chem. Soc.
1984,
106:
5728
<A NAME="RD16811ST-11B">11b </A>
Kawase M.
Kitamura T.
Kikugawa Y.
J.
Org. Chem.
1989,
54:
3394
<A NAME="RD16811ST-11C">11c </A>
Kikugawa Y.
Shimada M.
Chem. Lett.
1987,
1771
<A NAME="RD16811ST-11D">11d </A> For a review, see:
Kikugawa Y.
Heterocycles
2009,
78:
571
For reviews on copper-catalyzed
cross-couplings, see:
<A NAME="RD16811ST-12A">12a </A>
Ley SV.
Thomas AW.
Angew.
Chem. Int. Ed.
2003,
42:
5400
<A NAME="RD16811ST-12B">12b </A>
Beletskaya IP.
Cheprakov AV.
Coord. Chem.
Rev.
2004,
248:
2337
<A NAME="RD16811ST-12C">12c </A>
Evano G.
Blanchard N.
Toumi M.
Chem.
Rev.
2008,
108:
3054
For selected reviews on palladium-catalyzed cross-couplings,
see:
<A NAME="RD16811ST-12D">12d </A>
Schlummer B.
Scholz U.
Adv. Synth. Catal.
2004,
346:
1599
<A NAME="RD16811ST-12E">12e </A>
Surry DS.
Buchwald SL.
Angew.
Chem. Int. Ed.
2008,
47:
6338
<A NAME="RD16811ST-12F">12f </A>
Surry DS.
Buchwald SL.
Chem. Sci.
2011,
2:
27
<A NAME="RD16811ST-13">13 </A>
Wasa M.
Yu J.-Q.
J. Am. Chem. Soc.
2008,
130:
14058
<A NAME="RD16811ST-14">14 </A>
Jones KL.
Porzelle A.
Hall A.
Woodrow MD.
Tomkinson NCO.
Org. Lett.
2008,
10:
797
<A NAME="RD16811ST-15">15 </A>
Porzelle A.
Woodrow MD.
Tomkinson NCO.
Org. Lett.
2009,
11:
233
<A NAME="RD16811ST-16">16 </A>
Xing X.
Wu J.
Luo J.
Dai W.-M.
Synlett
2006,
2099
<A NAME="RD16811ST-17">17 </A>
van den Hoogenband A.
den Hartog JAJ.
Lange JHM.
Terpstra JW.
Tetrahedron
Lett.
2004,
45:
8535
<A NAME="RD16811ST-18">18 </A>
Yang BH.
Buchwald SL.
Org. Lett.
1999,
1:
35
<A NAME="RD16811ST-19">19 </A>
Klapars A.
Huang X.
Buchwald SL.
J.
Am. Chem. Soc.
2002,
124:
7421
For reports of the benefit of molecular
sieves in the copper-catalyzed cross-coupling reaction, see:
<A NAME="RD16811ST-20A">20a </A>
Cristau H.-J.
Cellier PP.
Spindler J.-F.
Taillefer M.
Chem. Eur. J.
2004,
10:
5607
<A NAME="RD16811ST-20B">20b </A>
Shen Y.
Li M.
Wang S.
Zhan T.
Tan Z.
Guo C.-C.
Chem.
Commun.
2009,
953
<A NAME="RD16811ST-20C">20c </A>
Yao B.
Zhang Y.
Li Y.
J.
Org. Chem.
2010,
75:
4554
<A NAME="RD16811ST-21A">21a </A>
Ma D.
Cai Q.
Zhang H.
Org. Lett.
2003,
5:
2453
<A NAME="RD16811ST-21B">21b </A>
Zhang H.
Cai Q.
Ma D.
J.
Org. Chem.
2005,
70:
5164
<A NAME="RD16811ST-22">22 </A>
Hosseinzadeh R.
Tajbakhsh M.
Mohadjerani M.
Mehdinejad H.
Synlett
2004,
1517
<A NAME="RD16811ST-23A">23a </A>
Altman RA.
Buchwald SL.
Org.Lett.
2007,
9:
643
<A NAME="RD16811ST-23B">23b </A>
de Lange B.
Lambers-Verstappen MH.
Schmieder-van de Vondervoot L.
Sereinig N.
de Rijk R.
de Vries AHM.
de Vries JG.
Synlett
2006,
3105
<A NAME="RD16811ST-24">24 </A>
Shafir A.
Buchwald SL.
J. Am. Chem. Soc.
2006,
128:
8742
<A NAME="RD16811ST-25">25 </A>
General Procedure
To
an oven-dried vial equipped with a stirrer bar, hydroxamate (1.0
equiv, 0.2 mmol), copper(II) bromide (10 mol%), K2 CO3 (2.0
equiv, 0.4 mmol) and 3 Å MS (100 wt%) were added.
The vial was closed using an aluminium open-top seal with PTFE-faced
septum, flushed with argon before addition of dry toluene (2 mL)
and DMEDA (20 mol%) and stirred at the appropriate temperature
for the appropriate time (Table
[¹ ]
).
After cooling the reaction mixture was diluted with EtOAc (5 mL)
then filtered through a short silica plug and washed with EtOAc.
The solvent was removed in vacuo, and the crude product was purified
by flash column chromatography on silica gel eluting with EtOAc-hexane
(1:5) to give the product.
<A NAME="RD16811ST-26">26 </A>
Compound 2a was
obtained in 61% yield from iodo hydroxamate 1b if
K3 PO4 was used as base. For a report of the
advantage of K3 PO4 as compared to K2 CO3 in
copper-catalyzed amidation of aryliodides, see ref. 19.
<A NAME="RD16811ST-27">27 </A>
Product 2a from
chloro hydroxamate 1c was obtained in 43% yield
if reaction was carried out for 1 h in MeCN at sample concentration
0.2 mmol/mL.
<A NAME="RD16811ST-28">28 </A>
Crystallographic data for 3 have been deposited at the Cambridge
Crystallographic Data Centre as supplementary publication no. CCDC-827122,
and may be obtained free of charge on application to CCDC, 12 Union
Road, Cambridge CD2 1EZ, UK; fax: +44 (1223)336033; or deposit@ccdc.cam.ac.uk.
For recent examples where the hydoxamate
N-O moiety serves as an internal oxidant, see:
<A NAME="RD16811ST-29A">29a </A>
Guimond N.
Gouliaras C.
Fagnou K.
J.
Am. Chem. Soc.
2010,
132:
6908
<A NAME="RD16811ST-29B">29b </A>
Patureau FW.
Glorius F.
Angew. Chem.
Int. Ed.
2011,
50:
1977
<A NAME="RD16811ST-30">30 </A> For a review on oxidative homocoupling
reactions, see:
Klussmann M.
Sureshkumar D.
Synthesis
2011,
353