Abstract
Markovnikov-type enol esters are synthesized selectively from
N-protected amino acids by ruthenium-mediated coupling with the
appropriate acetylenes. Subsequent hydrogenation of the enol esters
over Adams’ catalyst gives the corresponding saturated products
in moderate to good diastereoselectivities. The enol esters undergo
reaction with m -chloroperoxybenzoic acid
to yield α-acyloxy ketones, as the products of
rearrangement, instead of the expected epoxides.
Key words
enol esters - diastereoselectivity - hydrogenation - epoxidation - ruthenium
References
<A NAME="RT25711SS-1A">1a </A>
Wexler A.
Balchunis RJ.
Swenton JS.
J. Chem. Soc., Chem.
Commun.
1975,
601
<A NAME="RT25711SS-1B">1b </A>
Jung ME.
Hudspeth JP.
J.
Am. Chem. Soc.
1978,
100:
4309
<A NAME="RT25711SS-1C">1c </A>
Pirrung MC.
Lee YR.
Tetrahedron
Lett.
1994,
35:
6231
<A NAME="RT25711SS-2">2 </A>
Motherwell WB.
Roberts LR.
J. Chem. Soc., Chem. Commun.
1992,
1582
<A NAME="RT25711SS-3">3 </A>
Reetz MT.
Goossen LJ.
Meiswinkel A.
Paetzold J.
Jensen JF.
Org.
Lett.
2003,
5:
3099
For example, see:
<A NAME="RT25711SS-4A">4a </A>
Boaz NW.
Tetrahedron Lett.
1998,
39:
5505
<A NAME="RT25711SS-4B">4b </A>
Tang W.
Liu D.
Zhang X.
Org.
Lett.
2003,
5:
205
<A NAME="RT25711SS-4C">4c </A>
Wu S.
Wang W.
Tang W.
Lin M.
Zhang X.
Org. Lett.
2002,
4:
4495
<A NAME="RT25711SS-4D">4d </A>
Szőri K.
Szöllősi G.
Felföldi K.
Bartók M.
React. Kinet. Catal. Lett.
2005,
84:
151
<A NAME="RT25711SS-5">5 </A>
Isambert N.
Cruz M.
Arévalo J.
Gómez E.
Lavilla R.
Org.
Lett.
2007,
9:
4199
<A NAME="RT25711SS-6">6 </A>
Jeong JU.
Tao B.
Sagasser I.
Henniges H.
Sharpless KB.
J.
Am. Chem. Soc.
1998,
120:
6844
<A NAME="RT25711SS-7">7 </A>
Feng X.
Shi Y.
J. Org. Chem.
2002,
67:
2831
<A NAME="RT25711SS-8">8 </A>
Draper AL.
Heilman WJ.
Schaepfer WE.
Shine HJ.
Shoolery JN.
J. Org. Chem.
1962,
27:
2727
<A NAME="RT25711SS-9A">9a </A>
Larock RC.
Oertle K.
Beatty KM.
J. Am. Chem. Soc.
1980,
102:
1966
<A NAME="RT25711SS-9B">9b </A>
Bach RD.
Woodard RA.
Anderson TJ.
Glick MD.
J.
Org. Chem.
1982,
47:
3707
<A NAME="RT25711SS-10">10 </A>
Nakagawa H.
Okimoto Y.
Sakaguchi S.
Ishii Y.
Tetrahedron Lett.
2003,
44:
103
<A NAME="RT25711SS-11">11 </A>
Hua R.
Tian X.
J. Org. Chem.
2004,
69:
5782
<A NAME="RT25711SS-12">12 </A>
Rotem M.
Shvo Y.
Organometallics
1983,
2:
1689
<A NAME="RT25711SS-13A">13a </A>
Mitsudo T.
Hori Y.
Watanabe Y.
J. Org. Chem.
1985,
50:
1566
<A NAME="RT25711SS-13B">13b </A>
Ruppin C.
Dixneuf PH.
Tetrahedron Lett.
1988,
29:
5365
<A NAME="RT25711SS-14">14 </A>
Le Gendre P.
Comte V.
Michelot A.
Moise C.
Inorg. Chim. Acta
2003,
350:
289
<A NAME="RT25711SS-15">15 </A>
Goossen LJ.
Paetzold J.
Koley D.
Chem.
Commun.
2003,
706
<A NAME="RT25711SS-16">16 </A>
The detailed structural parameters
have been deposited with the Cambridge Crystallographic Data Centre
(CCDC 805409).
<A NAME="RT25711SS-17">17 </A>
The detailed structural parameters
have been deposited with the Cambridge Crystallographic Data Centre
(CCDC 805410).
<A NAME="RT25711SS-18">18 </A>
MestReNova software, v. 6.2.1-7569,
2010, Mestrelab Research SL, Santiago de Compostela, Spain.
<A NAME="RT25711SS-19">19 </A>
Sheldrick GM.
SHELXS97. Program for solving crystal structures
University
of Gottingen;
Germany:
1997.
<A NAME="RT25711SS-20">20 </A>
Sheldrick GM.
SHELXL97. Program for crystal structure refinement
University
of Gottingen;
Germany:
1997.
<A NAME="RT25711SS-21">21 </A>
Tanaka K.
Honke S.
Urbańczyk-Lipkowska Z.
Toda F.
Eur. J. Org.
Chem.
2000,
3171