Synthesis 2011(11): 1809-1813  
DOI: 10.1055/s-0030-1260416
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Diastereoselective Transformations of Enol Esters Derived from Acetylenes and Chiral Carboxylic Acids

Iwona M. Kalinowskaa, Joanna Szawkałoa, Krzysztof K. Krawczyka, Jan K. Maurinb,c, Zbigniew Czarnocki*a
a Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
Fax: +48(22)8225996; e-Mail: czarnoz@chem.uw.edu.pl;
b National Medicines Institute, Chemska 30/34, 00-750 Warsaw, Poland
c Institute of Atomic Energy, 05-400 Otwock-Œwierk, Poland
Further Information

Publication History

Received 8 March 2011
Publication Date:
29 April 2011 (online)

Abstract

Markovnikov-type enol esters are synthesized selectively from N-protected amino acids by ruthenium-mediated coupling with the appropriate acetylenes. Subsequent hydrogenation of the enol esters over Adams’ catalyst gives the corresponding saturated products in moderate to good diastereoselectivities. The enol esters undergo reaction with m-chloroperoxybenzoic acid to yield α-acyl­oxy ketones, as the products of rearrangement, instead of the expected epoxides.

    References

  • 1a Wexler A. Balchunis RJ. Swenton JS. J. Chem. Soc., Chem. Commun.  1975,  601 
  • 1b Jung ME. Hudspeth JP. J. Am. Chem. Soc.  1978,  100:  4309 
  • 1c Pirrung MC. Lee YR. Tetrahedron Lett.  1994,  35:  6231 
  • 2 Motherwell WB. Roberts LR. J. Chem. Soc., Chem. Commun.  1992,  1582 
  • 3 Reetz MT. Goossen LJ. Meiswinkel A. Paetzold J. Jensen JF. Org. Lett.  2003,  5:  3099 
  • For example, see:
  • 4a Boaz NW. Tetrahedron Lett.  1998,  39:  5505 
  • 4b Tang W. Liu D. Zhang X. Org. Lett.  2003,  5:  205 
  • 4c Wu S. Wang W. Tang W. Lin M. Zhang X. Org. Lett.  2002,  4:  4495 
  • 4d Szőri K. Szöllősi G. Felföldi K. Bartók M. React. Kinet. Catal. Lett.  2005,  84:  151 
  • 5 Isambert N. Cruz M. Arévalo J. Gómez E. Lavilla R. Org. Lett.  2007,  9:  4199 
  • 6 Jeong JU. Tao B. Sagasser I. Henniges H. Sharpless KB. J. Am. Chem. Soc.  1998,  120:  6844 
  • 7 Feng X. Shi Y. J. Org. Chem.  2002,  67:  2831 
  • 8 Draper AL. Heilman WJ. Schaepfer WE. Shine HJ. Shoolery JN. J. Org. Chem.  1962,  27:  2727 
  • 9a Larock RC. Oertle K. Beatty KM. J. Am. Chem. Soc.  1980,  102:  1966 
  • 9b Bach RD. Woodard RA. Anderson TJ. Glick MD. J. Org. Chem.  1982,  47:  3707 
  • 10 Nakagawa H. Okimoto Y. Sakaguchi S. Ishii Y. Tetrahedron Lett.  2003,  44:  103 
  • 11 Hua R. Tian X. J. Org. Chem.  2004,  69:  5782 
  • 12 Rotem M. Shvo Y. Organometallics  1983,  2:  1689 
  • 13a Mitsudo T. Hori Y. Watanabe Y. J. Org. Chem.  1985,  50:  1566 
  • 13b Ruppin C. Dixneuf PH. Tetrahedron Lett.  1988,  29:  5365 
  • 14 Le Gendre P. Comte V. Michelot A. Moise C. Inorg. Chim. Acta  2003,  350:  289 
  • 15 Goossen LJ. Paetzold J. Koley D. Chem. Commun.  2003,  706 
  • 19 Sheldrick GM. SHELXS97. Program for solving crystal structures   University of Gottingen; Germany: 1997. 
  • 20 Sheldrick GM. SHELXL97. Program for crystal structure refinement   University of Gottingen; Germany: 1997. 
  • 21 Tanaka K. Honke S. Urbańczyk-Lipkowska Z. Toda F. Eur. J. Org. Chem.  2000,  3171 
16

The detailed structural parameters have been deposited with the Cambridge Crystallographic Data Centre (CCDC 805409).

17

The detailed structural parameters have been deposited with the Cambridge Crystallographic Data Centre (CCDC 805410).

18

MestReNova software, v. 6.2.1-7569, 2010, Mestrelab Research SL, Santiago de Compostela, Spain.