Int J Sports Med 2010; 31(12): 854-859
DOI: 10.1055/s-0030-1265175
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Reproducibility of Limb Power Outputs and Cardiopulmonary Responses to Exercise Using a Novel Swimming Training Machine

I. L. Swaine1 , A. M. Hunter2 , K. J. Carlton3 , J. D. Wiles1 , D. Coleman1
  • 1Canterbury Christ Church University, Department of Sport Science, Tourism and Leisure, Canterbury, United Kingdom
  • 2University of Stirling, School of Sport Sciences, Stirling, United Kingdom
  • 3Canterbury Christ Church University, Geographical and Life Sciences, Canterbury, United Kingdom
Further Information

Publication History

accepted after revision August 13, 2010

Publication Date:
08 October 2010 (online)

Abstract

The purpose of this study was to determine the reproducibility of limb power outputs and cardiopulmonary responses, to incremental whole-body exercise using a novel swimming training machine. 8 swimmers with a mean age of 23.7±4.6 (yrs), stature 1.77±0.13 (m) and body mass of 74.7±2.8 (kg) gave informed consent and participated in repeat exercise testing on the machine. All subjects performed 2 incremental exercise tests to exhaustion using front crawl movements. From these tests peak oxygen consumption (VO2peak), peak heart rate (HRpeak), peak power output (Wpeak) and individual limb power outputs were determined. Results showed there were no significant differences between test 1 and 2 for any variable at exhaustion, and the CV% ranged from 2.8 to 3.4%. The pooled mean values were; VO2peak 3.7±0.65 L.min-1, HRpeak 178.7±6.6 b.min-1 and Wpeak 349.7±16.5 W. The mean contributions to the total power output from the legs and arms were (37.3±4.1% and 62.7±5.1% respectively). These results show that it is possible to measure individual limb power outputs and cardopulmonary parameters reproducibly during whole-body exercise using this training machine, at a range of exercise intensities.

References

  • 1 Astrand I, Astrand P-O, Christensen EH, Hedman R. Circulatory and respiratory adaptations to severe muscular work.  Acta Physiol Scand. 1960;  50 250-259
  • 2 Bonen A, Wilson BA, Yarkony M, Belcastro AN. Maximal oxygen uptake during free, tethered and flume swimming.  J App Physiol. 1980;  48 232-235
  • 3 Bradshaw A, Hoyle J. Correlation between sprinting and dry land power.  J Swim Res. 1993;  9 15-18
  • 4 Bucher W. Influence of the leg kick and the arm stroke on the total speed during the crawl stroke. In Lewillie L. Clarys JP (eds) Proceedings of the 2nd International Symposium on Biomechanics in Swimming. Brussels, Belgium, 1974 Baltimore: University Park Press; 1975: 180-187
  • 5 Cohen J. Statistsical Power Analysis for the Behavioural Sciences.2nd Edition. Hillsdale NJ: Lawrence Erlbaum; 1988
  • 6 Costill DL, King DS, Thomas RT, Hargreaves M. Effects of reduced training on muscular power in swimmers.  Physician Sports Med. 1985;  13 94-98 ; 100–101
  • 7 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 8 Hawley JA, Williams MM, Vickovic MM, Handcock PJ. Muscle power predicts freestyle swimming performance.  Br J Sports Med. 1992;  26 151-155
  • 9 Hollander AP, De Groot G, van Ingen-Schenau GJ, Toussaint HM. Contribution of the legs to propulsion in front crawl swimming. In: Ungerechs BE, Wilke K, Reischle K (eds). Swimming Science V. Human Kinetics. Champaign, Illinois; 1988: 39-45
  • 10 Holmer I. Energy cost of arm stroke, leg kick and the whole stroke in competitive swimming styles.  Eur J Appl Physiol. 1974;  33 105-118
  • 11 Hopkins WG. Measures of reliability in sports medicine and science.  Sports Med. 2000;  30 1-15
  • 12 Johnson RE, Sharp RL, Hendrick MS. Relationship of swimming power and dryland power to sprint freestyle performance: A multiple regression approach.  J Swim Res. 1993;  9 10-14
  • 13 Kimura Y, Yeater RA, Martin RB. Simulated swimming: a useful tool for evaluation the VO2max of swimmers in the laboratory.  Br J Sports Med. 1990;  24 201-206
  • 14 Konstantaki M, Winter EM, Swaine IL. Peak oxygen uptake responses to free and simulated swimming using different body segments.  J Swim Res. 2004;  16 18-25
  • 15 Magel JR, Faulkner JA. Maximum oxygen uptake of college swimmers.  J Appl Physiol. 1967;  22 929-938
  • 16 Magel JR, Foglia GF, McArdle WD, Gutin B, Pechar GS, Katch FL. Specificity of swim training on maximum oxygen uptake.  J Appl Physiol. 1975;  38 151-155
  • 17 Maglischo E. Swimming Faster. California, USA: Mayfield Publishing Company; 1982: 81
  • 18 Olbrecht J, Clarys JP. EMG of Specific Dry Land Training for the Front Crawl. In: Huijing PA, de Groot G, Hollander JP, (eds). Biomechanics and Medicine in Swimming IV. Champaign, Illinois: Human Kinetics; 1983: 136-141
  • 19 Payton CJ, Bartlett R. Estimation of propulsive forces in swimming from three-dimensional kinematic data.  J Sports Sci. 1995;  13 447-454
  • 20 Rinehardt KF, Kraemer RR, Gormley S, Colan S. Comparison of maximal oxygen uptakes from tethered, the 183 and 457 meter unimpeded supramaximal freestyle swims.  Int J Sports Med. 1991;  12 6-9
  • 21 Roberts AJ, Termin B, Reilly MF, Pendergast DR. Effectiveness of biokinetic training on swimming performance in collegiate swimmers.  J Swim Res. 1991;  7 5-11
  • 22 Secher NH, Ruberg-Larsen N, Binkhorst RA, Bonde-Petersen F. Maximal oxygen uptake during arm cranking and combined arm plus leg exercise.  J Appl Physiol. 1974;  36 515-518
  • 23 Sharp RL, Troup JP, Costill DL. Relationship between power and sprint freestyle swimming.  Med Sci Sports Exerc. 1982;  14 53-56
  • 24 Shephard RJ, Allen C, Benade AJS, Davies CTM, Di Prampero PE, Hedman R, Merrisman JE, Myhre K, Simmons R. The maximum oxygen uptake. An international reference standard of cardiorespiratory fitness.  Bull World Health Organ. 1968;  38 757-764
  • 25 Swaine IL. The relationship between physiological variables from a swim bench ramp test and middle-distance swimming performance.  J Swim Res. 1994;  10 41-48
  • 26 Swaine IL, Reilly T. The freely chosen swimming stroke rate in a maximal swim and on a biokinetic swim bench.  Med Sci Sports Exerc. 1983;  15 370-375
  • 27 Swaine IL, Zanker CL. The reproducibility of cardiopulmonary responses to exercise using a swim bench.  Int J Sports Med. 1996;  17 140-144
  • 28 Swaine IL. Cardiopulmonary responses to exercise in swimmers using a swim bench and a leg-kicking ergometer.  Int J Sports Med. 1997;  18 359-363
  • 29 Swaine IL, Reavell C, Winter EM, Cooke DS, Maycock KM. A Dry-Land Ergometer for Measurement and Manipulation of Power Output During Front Crawl Arm-Pulling, Leg-Kicking and Whole Body Simulated Swimming. In: Haake SJ, (ed). The Engineering of Sport. Oxford: Blackwell Science; 1998: 93-98
  • 30 Swaine IL. Arm and leg power output in swimmers during simulated swimming.  Med Sci Sports Exerc. 2000;  32 1288-1292
  • 31 Takahashi S, Bone M, Cappaert JM, Barzdukas A, D’Acquisto L, Hollander AP, Troup JP. Validation of a Dryland Swimming Specific Measurement of Anaerobic Power. In. MacLaren D, Reilly T, Lees A (eds). Biomechanics and Medicine in Swimming VI. London: E & FN Spon; 1992: 301-305
  • 32 Toussaint HM, Knops W, DeGroot G, Hollander AP. The mechanical efficiency of front crawl swimming.  Med Sci Sports Exerc. 1990;  22 402-408
  • 33 Toussaint HM, Beek PJ. Biomechanics of competitive front crawl swimming.  Sports Med. 1992;  13 8-24

Correspondence

Dr. Ian L. Swaine

Canterbury Christ Church

University

Department of Sport Science

Tourism and Leisure

North Holmes Road

CT1 1QU Canterbury

United Kingdom

Phone: +44/1227/782 375

Fax: +44/1227/767 700

Email: ian.swaine@canterbury.ac.uk

    >