Exp Clin Endocrinol Diabetes 2011; 119(8): 484-489
DOI: 10.1055/s-0030-1269846
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Skeletal Muscle Insulin Resistance in Morbid Obesity: The Role of Interleukin-6 and Leptin

P. Mitrou1 , V. Lambadiari2 , E. Maratou1 , E. Boutati2 , V. Komesidou3 , A. Papakonstantinou4 , S. A. Raptis1 , 2 , G. Dimitriadis2
  • 1Hellenic National Center for Research, Prevention and Treatment of Diabetes Mellitus and its Complications, Athens, Greece (H.N.D.C)
  • 22nd Department of Internal Medicine, Research Institute and Diabetes Center, Athens University Medical School, Attikon University Hospital, Athens, Greece
  • 3Department of Nutrition and Dietetics, Evangelismos Hospital, Athens, Greece
  • 41st Department of Surgery, Evangelismos Hospital, Athens, Greece
Further Information

Publication History

received 29.06.2010 first decision 09.11.2010

accepted 16.11.2010

Publication Date:
02 August 2011 (online)

Abstract

Background: Although insulin resistance in obesity is established, the link between excess body fat and skeletal muscle insulin resistance is obscure. The aim of this study was to investigate whether cytokines secreted from the subcutaneous adipose tissue are related to the sensitivity of glucose metabolism to insulin in skeletal muscle.

Methods: A meal was given to 14 obese and 10 non-obese women. Plasma samples were taken for 360 min from a forearm vein and from the radial artery for glucose and insulin measurements. Interleukin-6, leptin, TNFα, resistin and adiponectin were measured preprandially from the radial artery and from the superficial epigastric vein. Forearm blood flow was measured with plethysmography.

Results: (1) In obese vs non-obese: (a) Glucose uptake by skeletal muscle was decreased (AUC0–360369±55 vs. 877±146 μmol/100 g tissue, p=0.001) (b) arterial interleukin-6 (2.5±0.5 vs. 1±0.1 pg/ml, p=0.013) and subcutaneous venous interleukin-6 (5±0.5 vs. 3.4±0.5 pg/ml, p=0.027) were increased (c) arterial leptin (63±7 vs. 5±0.6 ng/ml, p<0.0001) and subcutaneous venous leptin 80±8 vs. 6.5±0.7 ng/ml, p<0.0001) were increased. (2) Arterial interleukin-6 (p=0.002) and subcutaneous venous interleukin-6 (p=0.014) were negatively associated with forearm glucose uptake in obese. (3) No association was found between leptin and forearm glucose uptake, after correcting with fat mass.

Conclusions: In morbid obesity: (1) Subcutaneous adipose tissue releases interleukin-6 which could then mediate insulin resistance in skeletal muscle. (2) Although there is increased secretion of leptin by the subcutaneous adipose tissue, leptin levels are not correlated to the sensitivity of glucose metabolism to insulin in muscle.

References

  • 1 Al-Khalili L, Bouzakri K, Glund S. et al . Signalling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle.  Mol Endocrinol. 2006;  20 3364-3375
  • 2 Arita Y, Kihara S, Ouchi N. et al . Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.  Biochem Biophys Res Commun. 1999;  257 79-83
  • 3 Asano H, Izawa H, Nagata K. et al . Plasma resistin concentration determined by common variants in the resistin gene and associated with metabolic traits in an aged Japanese population.  Diabetologia. 2010;  53 234-246
  • 4 Bastard J-P, Maachi M, Van Nhieu JT. et al . Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro.  J Clin Endocrinol Metab. 2002;  87 2084-2089
  • 5 Beckers S, Peeters A, Freitas F. et al . Analysis of genetic variations in the resistin gene shows no associations in the resistin gene shows no associations with obesity in women.  Obesity. 2008;  16 905-907
  • 6 Carey AL, Bruce CR, Sacchetti M. et al . Interleukin-6 and tumor necrosis factor-alpha are not increased in patients with type 2 diabetes: evidence that plasma interleukin-6 is related to fat mass and not insulin responsiveness.  Diabetologia. 2004;  47 1029-1037
  • 7 Carey AL, Steinberg GR, Macaulay SL. et al . Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase.  Diabetes. 2006;  55 2688-2697
  • 8 Caro J, Sinha M, Raju S. et al . Insulin receptor kinase in human skeletal muscle from obese subjects with and without non-insulin dependent diabetes.  J Clin Invest. 1987;  79 1330-1337
  • 9 Chevrel G, Granet C, Miossec P. Contribution of tumour necrosis factor alpha and interleukin (IL) 1beta to IL-6 production, NF-kappa B nuclear translocation, and class 1 MHC expression in muscle cells: in vitro regulation with specific cytokine inhibitors.  Ann Rheum Dis. 2005;  64 1257-1262
  • 10 Coppack S, Fisher R, Humphreys S. et al . Carbohydrate metabolism in insulin resistance: glucose uptake and lactate production by adipose tissue and forearm tissues in vivo before and after a mixed meal.  Clin Sci. 1996;  90 409-415
  • 11 Cottam D, Mattar S, Barinas-Mitchell E. et al . The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: Implications and effects of weight loss.  Obes Surg. 2004;  14 589-600
  • 12 Curat C, Wegner V, Sengenes C. et al . Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin.  Diabetologia. 2006;  49 744-747
  • 13 Dimitriadis G, Boutati E, Lambadiari V. et al . Restoration of early insulin secretion after a meal in type 2 diabetes: effects on lipid and glucose metabolism.  Eur J Clin Invest. 2004;  34 490-497
  • 14 Dimitriadis G, Newsholme E. Integration of some biochemical and physiologic effects of insulin that may play a role in the control of blood glucose concentration. In: LeRoith D, Taylor S, Olefsky J (eds) Diabetes Mellitus, a fundamental and clinical text Philadelphia, Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo: Lippincott Williams and Wilkins; 2004: 183-197
  • 15 Dyck DJ, Heigenhauser GJF, Bruce CR. The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity.  Acta Physiologica. 2006;  186 5-16
  • 16 Dyck DJ. Adipokines as regulators of muscle metabolism and insulin sensitivity.  Appl Physiol Nutr Metab. 2009;  34 396-402
  • 17 Fain J, Madan A, Hiler M. et al . Comparison of the release of adipokines by adipose tissue, adipose tissue matrix and adipocytes from visceral and subcutaneous abdominal adipose tissue of obese humans.  Endocrinology. 2004;  145 2273-2282
  • 18 Fain J. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to nonfat cells.  Vitam Horm. 2006;  74 443-477
  • 19 Fantuzzi G. Adipose tissue, adipokines and inflammation.  J Allergy Clin Immunol. 2005;  115 911-919
  • 20 Fischer-Posovsky P, Wabitsch M, Hochberg Z. Endocrinology of adipose tissue – an update.  Horm Metab Res. 2007;  39 314-321
  • 21 Franckhauser S, Elias I, Rotter Sopasakis V. et al . Overexpression of IL-6 leads to hyperinsulinaemia, liver inflammation and reduced body weight in mice.  Diabetologia. 2008;  51 1306-1316
  • 22 Haseeb A, Iliyas M, Chakrabarti S. et al . Single-nucleotide polymorphisms in peroxisome proliferators activated receptor gamma and their association with plasma levels of resistin and the metabolic syndrome in a South Indian population.  Journal of Biosciences. 2009;  34 405-414
  • 23 Hivert MF, Sullivan L, Fox C. et al . Assiciations of adiponectin, resistin, and tumor necrosis factor-alpha with insulin resistance.  J Clin Endocrinol Metab. 2008;  93 3165-3172
  • 24 Horowitz J, Coppack S, Klein S. Whole-body and adipose tissue glucose metabolism in response to short-term fasting in lean and obese women.  Am J Clin Nutr. 2001;  73 517-522
  • 25 Hotta K, Funahashi T, Arita Y. et al . Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.  Arter Thromb Vasc Biol. 2000;  20 1595-1599
  • 26 Hu E, Liang P, Spiegelman BM. Adipo-q is a novel adipose-specific gene dysregulated in obesity.  J Biol Chem. 1996;  271 10697-10703
  • 27 Kern PA, Ranganathan S, Li C. et al . Adipose tissue tumour necrosis factor and interleukin-6 expression in human obesity and insulin resistance.  Am J Physiol. 2001;  280 E745-E751
  • 28 Klein S, Coppack SW, Mohamed-Ali V. et al . Adipose tissue leptin production and plasma leptin kinetics in humans.  Diabetes. 1996;  45 984-987
  • 29 Klover PJ, Zimmers TA, Koniaris LG. et al . Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice.  Diabetes. 2003;  52 2784-2789
  • 30 Kolterman O, Insel J, Saekow M. et al . Mechanisms of insulin resistance in human obesity: evidence for receptor and postreceptor defects.  J Clin Invest. 1980;  65 1272-1284
  • 31 Lee J, Chan J, Yiannakouris N. et al . Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects.  J Clin Endocrinol Metab. 2003;  88 4848-4856
  • 32 Maratos-Flyer E, Flyer JS. Obesity. In: Kahn CR, Weir GC, King GL, Jacobson AM, Moses AC, Smith RL (eds) Joslin's Diabetes Mellitus Philadelphia, Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo: Lippincott Williams and Wilkins; 2005: 533-546
  • 33 Mitrou P, Boutati E, Lambadiari V. et al . Rates of glucose uptake in adipose tissue and muscle in vivo after a mixed meal in women with morbid obesity.  J Clin Endocrinol Metab. 2009;  94 2958-2961
  • 34 Mohamed-Ali V, Goodrick SJ, Rawesh A. et al . Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo.  J Clin Endocrinol Metab. 1997;  8 4196-4200
  • 35 Mohamed-Ali V, Pinkney JH, Coppack SW. Adipose tissue as an endocrine and paracrine organ.  Int J Obes. 1982;  2 1145-1158
  • 36 Motoshima H, Wu X, Sinha M. et al . Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: effects of insulin and rosiglitazone.  J Clin Endocrinol Metab. 2000;  87 5662-5667
  • 37 Muller G, Ertl J, Gerl M. et al . Leptin impairs metabolic actions of insulin in isolated rat adipocytes.  J Biol Chem. 1997;  272 10585-10593
  • 38 Ofei F, Hurel S, Newkirk J. et al . Effects of an engineered human anti-TNF-α antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM.  Diabetes. 1996;  45 881-885
  • 39 Paquot N, Castillo M, Lefebre P. et al . No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients.  J Clin Endocrinol Metab. 2000;  85 1316-1319
  • 40 Pedersen BK. The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control.  Essays Biochem. 2006;  42 105-117
  • 41 Prager R, Wallace P, Olefsky J. Direct and indirect effects of insulin to inhibit hepatic glucose output in obese subjects.  Diabetes. 1987;  36 607-611
  • 42 Prager R, Wallace P, Olefsky J. In vivo kinetics of insulin action on peripheral glucose disposal and hepatic glucose output in normal and obese subjects.  J Clin Invest. 1986;  78 472-481
  • 43 Rabe K, Lehrke M, Parhofer KG. et al . Adipokines and insulin resistance.  Mol Med. 2008;  14 741-751
  • 44 Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumour necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects.  J Biol Chem. 2003;  278 45777-45784
  • 45 Sabin M, Holly J, Shield J. et al . Mature subcutaneous and visceral adipocytes concentrations of adiponectin are highly correlated in prepubertal children and inversely related to body mass index standard deviation score.  J Clin Endocrinol Metab. 2006;  91 332-335
  • 46 Savage D, Sewter C, Klenk E. et al . Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans.  Diabetes. 2001;  50 2199-2202
  • 47 Senn JJ, Klover PJ, Nowak IA. et al . Interleukin-6 induces cellular insulin resistance in hepatocytes.  Diabetes. 2002;  51 3391-3399
  • 48 Shetty G, Economides P, Horton E. et al . Circulating adiponectin and resistin levels in relation to metabolic factors, inflammatory markers, and vascular reactivity in diabetic patients and subjects at risk for diabetes.  Diabetes care. 2004;  27 2450-2457
  • 49 Shimomura I, Hammer RE, Ikemoto S. et al . Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy.  Nature. 1999;  401 73-76
  • 50 Statnick MA, Beavers LS, Conner LJ. et al . Decreased expression of apM1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes.  Int J Exp Diabetes Res. 2000;  1 81-88
  • 51 Weyer C, Funahashi T, Tanaka S. et al . Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia.  J Clin Endocrinol Metab. 2001;  86 1930-1935
  • 52 Yaspelkis BB, Davis JR, Saberi M. et al . Leptin administration improves skeletal muscle insulin responsiveness in diet-induced insulin resistant rats.  Am J Physiol. 2001;  280 E130-E142

Correspondence

G. DimitriadisMD, DPhil 

2nd Department of Internal

Medicine

Research Institute and Diabetes

Center

Athens University, “Attikon”

University Hospital

1 Rimini Street

GR-12462 Haidari

Greece

Phone: +30/210/583 2547

Fax: +30/210/583 2561

Email: gdimi@ath.forthnet.gr

Email: gdimitr@med.uoa.gr

    >