Horm Metab Res 2011; 43(2): 106-111
DOI: 10.1055/s-0030-1269899
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Aldosterone Producing Adrenal Adenomas are Characterized by Activation of Calcium/Calmodulin-dependent Protein Kinase (CaMK) Dependent Pathways

S. Sackmann1 , U. Lichtenauer2 , I. Shapiro2 , M. Reincke2 , F. Beuschlein2
  • 1Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
  • 2Medical Clinic, University Hospital Innenstadt, Ludwig Maximilians University, Munich, Germany
Further Information

Publication History

received 21.08.2010

accepted 22.11.2010

Publication Date:
19 January 2011 (online)

Abstract

Primary aldosteronism is the most prevalent cause of secondary hypertension. However, insights in pathophysiological mechanisms resulting in autonomous aldosterone secretion are limited. Although transcriptional regulators of aldosterone synthase (CYP11B2) including calcium-binding calmodulin kinase (CaMK) dependent pathways have been defined in vitro, it remains uncertain whether these mechanisms play a role in the context of dysregulated steroidogenesis in aldosterone producing adrenadenomas. Thus, we compared expression and activation of key components of CaMK pathways in aldosterone producing adenomas (APAs) with normal adrenals glands (NAGs). As expected, aldosterone synthase expression in APAs was significantly higher in comparison to NAGs, suggesting transcriptional activation as a contributing factor of aldosterone excess. Along the same line, CaMKI was significantly upregulated in APAs on the mRNA and protein level. Furthermore, immunohistochemistry revealed nuclear localization of CaMKI in these tumors. The phosphorylation of CREB, a target protein for CaMKI was increased, which could represent a further stimulation of aldosterone synthase transcription. In summary, this study provides indirect evidence for a causative involvement of the CaM kinase signaling pathway in human aldosterone producing adenomas.

References

  • 1 Fields LE, Burt VL, Cutler JA, Hughes J, Roccella EJ, Sorlie P. The burden of adult hypertension in the United States 1999 to 2000: a rising tide.  Hypertension. 2004;  44 398-404
  • 2 Conn JW. Aldosteronism and hypertension. Primary aldosteronism versus hypertensive disease with secondary aldosteronism.  Arch Intern Med. 1961;  107 813-828
  • 3 Funder JW, Carey RM, Fardella C, Gomez-Sanchez CE, Mantero F, Stowasser M, Young WF Jr, Montori VM. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline.  J Clin Endocrinol Metab. 2008;  93 3266-3281
  • 4 Rossi GP, Bernini G, Caliumi C, Desideri G, Fabris B, Ferri C, Ganzaroli C, Giacchetti G, Letizia C, Maccario M, Mallamaci F, Mannelli M, Mattarello MJ, Moretti A, Palumbo G, Parenti G, Porteri E, Semplicini A, Rizzoni D, Rossi E, Boscaro M, Pessina AC, Mantero F. A prospective study of the prevalence of primary aldosteronism in 1 125 hypertensive patients.  J Am Coll Cardiol. 2006;  48 2293-2300
  • 5 Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism.  J Am Coll Cardiol. 2005;  45 1243-1248
  • 6 Swulius MT, Waxham MN. Ca(2+)/calmodulin-dependent protein kinases.  Cell Mol Life Sci. 2008;  65 2637-2657
  • 7 Soderling TR. The Ca-calmodulin-dependent protein kinase cascade.  Trends Biochem Sci. 1999;  24 232-236
  • 8 Bronstein JM, Farber DB, Wasterlain CG. Regulation of type-II calmodulin kinase: functional implications.  Brain Res Brain Res Rev. 1993;  18 135-147
  • 9 Heist EK, Srinivasan M, Schulman H. Phosphorylation at the nuclear localization signal of Ca2+/calmodulin-dependent protein kinase II blocks its nuclear targeting.  J Biol Chem. 1998;  273 19763-19771
  • 10 Soderling TR, Derkach VA. Postsynaptic protein phosphorylation and LTP.  Trends Neurosci. 2000;  23 75-80
  • 11 Jones KT. Intracellular calcium in the fertilization and development of mammalian eggs.  Clin Exp Pharmacol Physiol. 2007;  34 1084-1089
  • 12 Shin MK, Kim MK, Bae YS, Jo I, Lee SJ, Chung CP, Park YJ, Min do S. A novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/calmodulin-dependent protein kinase II/ERK/AP-1 signaling pathway in human bone marrow-derived mesenchymal stem cells.  Cell Signal. 2008;  20 613-624
  • 13 Munevar S, Gangopadhyay SS, Gallant C, Colombo B, Sellke FW, Morgan KG. CaMKIIT287 and T305 regulate history-dependent increases in alpha agonist-induced vascular tone.  J Cell Mol Med. 2008;  12 219-226
  • 14 Miller SG, Kennedy MB. Distinct forebrain and cerebellar isozymes of type II Ca2+/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction.  J Biol Chem. 1985;  260 9039-9046
  • 15 de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors.  Pharmacol Rev. 2000;  52 415-472
  • 16 Nogueira EF, Gerry D, Mantero F, Mariniello B, Rainey WE. The role of TASK1 in aldosterone production and its expression in normal adrenal and aldosterone-producing adenomas.  Clin Endocrinol (Oxf). 2010;  73 22-29
  • 17 Lotshaw DP. Role of membrane depolarization and T-type Ca2+ channels in angiotensin II and K+ stimulated aldosterone secretion.  Mol Cell Endocrinol. 2001;  175 157-171
  • 18 Bassett MH, Suzuki T, Sasano H, White PC, Rainey WE. The orphan nuclear receptors NURR1 and NGFIB regulate adrenal aldosterone production.  Mol Endocrinol. 2004;  18 279-290
  • 19 Condon JC, Pezzi V, Drummond BM, Yin S, Rainey WE. Calmodulin-dependent kinase I regulates adrenal cell expression of aldosterone synthase.  Endocrinology. 2002;  143 3651-3657
  • 20 Saeger W, Fassnacht M, Chita R, Prager G, Nies C, Lorenz K, Barlehner E, Simon D, Niederle B, Beuschlein F, Allolio B, Reincke M. High diagnostic accuracy of adrenal core biopsy: results of the German and Austrian adrenal network multicenter trial in 220 consecutive patients.  Hum Pathol. 2003;  34 180-186
  • 21 Fallo F, Pezzi V, Barzon L, Mulatero P, Veglio F, Sonino N, Mathis JM. Quantitative assessment of CYP11B1 and CYP11B2 expression in aldosterone-producing adenomas.  Eur J Endocrinol. 2002;  147 795-802
  • 22 Picciotto MR, Zoli M, Bertuzzi G, Nairn AC. Immunochemical localization of calcium/calmodulin-dependent protein kinase I.  Synapse. 1995;  20 75-84
  • 23 Yamagata Y, Obata K. Ca2+/calmodulin-dependent protein kinase II in septally kindled rat brains: changes in protein level, activity and subcellular distribution in hippocampus and cerebral cortex.  Neurosci Lett. 1996;  211 109-112
  • 24 Haribabu B, Hook SS, Selbert MA, Goldstein EG, Tomhave ED, Edelman AM, Snyderman R, Means AR. Human calcium-calmodulin dependent protein kinase I: cDNA cloning, domain structure and activation by phosphorylation at threonine-177 by calcium-calmodulin dependent protein kinase I kinase.  EMBO J. 1995;  14 3679-3686
  • 25 Yamagata Y, Obata K. Dynamic regulation of the activated, autophosphorylated state of Ca2+/calmodulin-dependent protein kinase II by acute neuronal excitation in vivo.  J Neurochem. 1998;  71 427-439
  • 26 Lenzini L, Seccia TM, Aldighieri E, Belloni AS, Bernante P, Giuliani L, Nussdorfer GG, Pessina AC, Rossi GP. Heterogeneity of aldosterone-producing adenomas revealed by a whole transcriptome analysis.  Hypertension. 2007;  50 1106-1113
  • 27 Martin LJ, Boucher N, Brousseau C, Tremblay JJ. The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through cooperation with Ca2+/calmodulin-dependent protein kinase I.  Mol Endocrinol. 2008;  22 2021-2037
  • 28 Schulman H, Heist K, Srinivasan M. Decoding Ca2+ signals to the nucleus by multifunctional CaM kinase.  Prog Brain Res. 1995;  105 95-104
  • 29 Stedman DR, Uboha NV, Stedman TT, Nairn AC, Picciotto MR. Cytoplasmic localization of calcium/calmodulin-dependent protein kinase I-alpha depends on a nuclear export signal in its regulatory domain.  FEBS Lett. 2004;  566 275-280
  • 30 Bandulik S, Penton D, Barhanin J, Warth R. TASK1 and TASK3 potassium channels: determinants of aldosterone secretion and adrenocortical zonation.  Horm Metab Res. 2010;  42 450-457

Correspondence

F. BeuschleinMD 

Division of Endocrine Research

Department of Medicine

Innenstadt

University Hospital Munich

Ziemssenstraße 1

80336 Munich

Germany

Phone: +49/89/5160 2110

Fax: +49/89/5160 4467

Email: felix.beuschlein@med.uni-muenchen.de

    >