Horm Metab Res 2011; 43(3): 183-187
DOI: 10.1055/s-0030-1270527
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Menin Interacts with β-Catenin in Osteoblast Differentiation

Y. Inoue1 , G. N. Hendy2 , L. Canaff2 , S. Seino1 , 3 , H. Kaji1 , 3
  • 1Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
  • 2Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Canada
  • 3Division of Cellular and Molecular Medicine, Department of Physiology and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
Further Information

Publication History

received 06.09.2010

accepted 20.12.2010

Publication Date:
24 January 2011 (online)

Abstract

Menin promotes the commitment of pluripotent mesenchymal stem cells to the osteoblast lineage by interacting with the BMP-2 signaling molecules Smad1/5, and Runx2. However, the relationship between menin and the Wnt-β-catenin pathway in bone is unclear. Reduction of menin expression by transfection of a menin antisense construct did not alter the levels of β-catenin in mouse mesenchymal C2C12 and osteoblastic MC3T3-E1 cells. However, menin co-immunoprecipitated with β-catenin as well as LEF-1 in C2C12 and MC3T3-E1 cells. Reduction of menin expression by antisense menin transfection antagonized β-catenin-induced transcriptional activity of the pGL3-OT luciferase reporter construct in C2C12 and MC3T3-E1 cells. Antisense menin transfection antagonized the BMP-2 and β-catenin-stimulated increases in Runx2 and alkaline phosphatase levels in C2C12 cells. The data show that menin interacts with β-catenin in mouse mesenchymal and osteoblastic cells, and suggest that the interaction is important for osteoblast differentiation.

References

  • 1 Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR, Debelenko LV, Zhuang Z, Lubensky IA, Liotta LA, Crabtree JS, Wang Y, Roe BA, Weisemann J, Boguski MS, Agarwal SK, Kester MB, Kim YS, Heppner C, Dong Q, Spiegel AM, Burns AL, Marx SJ. Positional cloning of the gene for multiple endocrine neoplasia-type 1.  Science. 1997;  276 404-407
  • 2 Hendy GN, Kaji H, Sowa H, Lebrun JJ, Canaff L. Menin and TGF-β superfamily member signaling via the Smad pathway in pituitary, parathyroid and osteoblast.  Horm Metab Res. 2005;  37 375-379
  • 3 Kaji H, Canaff L, Lebrun JJ, Goltzman D, Hendy GN. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling.  Proc Natl Acad Sci USA. 2001;  98 3837-3842
  • 4 Kaji H, Canaff L, Goltzman D, Hendy GN. Cell cycle regulation of menin expression.  Cancer Res. 1999;  59 5097-5101
  • 5 Sowa H, Kaji H, Kitazawa R, Kitazawa S, Tsukamoto T, Yano S, Tsukada T, Canaff L, Hendy GN, Sugimoto T, Chihara K. Menin inactivation leads to loss of transforming growth factor beta inhibition of parathyroid cell proliferation and parathyroid hormone secretion.  Cancer Res. 2004;  64 2222-2228
  • 6 Chandrasekharappa SC, Teh BT. Functional studies of the MEN1 gene.  J Intern Med. 2003;  253 606-615
  • 7 Stewart C, Parente F, Piehl F, Farnebo F, Quincey D, Sillins G, Bergman L, Carle GF, Lemmens I, Grimmond S, Xian CZ, Khodei S, Teh BT, Lagercrantz J, Siggers P, Calender A, Van de Vem V, Kas K, Weber G, Hayward N, Gaudray P, Larsson C. Characterization of the mouse Men1 gene and its expression during development.  Oncogene. 1998;  17 2485-2493
  • 8 Crabtree JS, Scacheri PC, Ward JM, Garrett-Beal L, Emmert-Buck MR, Edgemon KA, Lorang D, Libutti SK, Chandrasekharappa SC, Marx SJ, Spiegel AM, Collins FS. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors.  Proc Natl Acad Sci USA. 2001;  98 1118-1123
  • 9 Sowa H, Kaji H, Canaff L, Hendy GN, Tsukamoto T, Yamaguchi T, Miyazono K, Sugimoto T, Chihara K. Inactivation of menin, the product of the multiple endocrine neoplasia type 1 gene, inhibits the commitment of multipotential mesenchymal stem cells into the osteoblast lineage.  J Biol Chem. 2003;  278 21058-21069
  • 10 Sowa H, Kaji H, Hendy GN, Canaff L, Komori T, Sugimoto T, Chihara K. Menin is required for bone morphogenetic protein 2- and transforming growth factor β-regulated osteoblastic differentiation through interaction with Smads and Runx2.  J Biol Chem. 2004;  279 40267-40275
  • 11 Naito J, Kaji H, Sowa H, Hendy GN, Sugimoto T, Chihara K. Menin suppresses osteoblast differentiation by antagonizing the AP-1 factor, JunD.  J Biol Chem. 2005;  280 4785-4791
  • 12 Krishnan V, Bryant HU, MacDougald OA. Regulation of bone mass by Wnt signaling.  J Clin Invest. 2006;  116 1202-1209
  • 13 Tobimatsu T, Kaji H, Sowa H, Naito J, Hendy GN, Sugimoto T, Chihara K. Parathyroid hormone increases β-catenin levels through Smad3 in mouse osteoblastic cells.  Endocrinology. 2006;  147 2583-2590
  • 14 Inoue Y, Canaff L, Hendy GN, Hisa I, Sugimoto T, Chihara K, Kaji H. Role of Smad3, acting independently of transforming growth factor-β, in the early induction of Wnt-β-catenin signaling by parathyroid hormone in mouse osteoblastic cells.  J Cell Biochem. 2009;  108 285-294
  • 15 Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW. Serine phosphorylation-regulated ubiquitination and degradation of β-catenin.  J Biol Chem. 1997;  272 24753-24738
  • 16 Kaji H, Naito J, Inoue Y, Sowa H, Sugimoto T, Chihara K. Statin suppresses apoptosis in osteoblastic cells: role of transforming growth factor-β-Smad3 pathway.  Horm Metab Res. 2008;  40 746-751
  • 17 Engleka KA, Wu M, Zhang M, Antonucci NB, Epstein JA. Menin is required in cranial neural crest for pathogenesis and perinatal viability.  Dev Biol. 2007;  311 524-537
  • 18 Aziz A, Miyake T, Engleka KA, Epstein JA, Mcdermott JC. Menin expression modulates mesenchymal cell commitment to the myogenic and osteogenic lineages.  Dev Biol. 2009;  332 116-130
  • 19 Rawadi G, Vayssiere B, Dunn F, Baron R, Roman-Roman S. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop.  J Bone Miner Res. 2003;  18 1842-1853
  • 20 Chen Y, Whetstone HC, Youn A, Nadesan P, Chow EC, Lin AC, Alman BA. β-Catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation.  J Biol Chem. 2007;  282 526-533
  • 21 Reinhold MI, Naski MC. Direct interactions of Runx2 and canonical Wnt signaling induce FGF18.  J Biol Chem. 2007;  282 3653-3663
  • 22 Chen G, Jingbo AJ, Wang M, Farley S, Lee LC, Sawicki MP. Menin promotes the Wnt signaling pathway in pancreatic endocrine cells.  Mol Cancer Res. 2008;  6 1894-1907
  • 23 Cao Y, Liu R, Jiang X, Lu J, Jiang J, Zhang C, Li X, Ning G. Nuclear-cytoplasmic shuttling of menin regulates translocation of β-catenin.  Mol Cell Biol. 2009;  29 5477-5487
  • 24 Bertolino P, Tong WM, Herrerra PL, Casse H, Zhang CX, Wang ZQ. Pancreatic β-cell-specific ablation of the multiple endocrine neoplasia type 1 (MEN1) gene causes full penetrance of insulinoma development in mice.  Cancer Res. 2003;  63 4836-4841

Correspondence

H. Kaji

Division of Diabetes,

Metabolism and Endocrinology

Department of Internal

Medicine and Division of

Cellular and Molecular Medicine

Kobe University Graduate

School of Medicine

7-5-2 Kusunoki-cho

650-0017 Chuo-ku, Kobe

Japan

Phone: +81/78/382 5861

Fax: +81/78/382 2080

Email: hiroshik@med.kobe-u.ac.jp

    >