Z Orthop Unfall 2012; 150(1): 83-88
DOI: 10.1055/s-0030-1270894
Sonstiges

© Georg Thieme Verlag KG Stuttgart · New York

Einflussfaktoren auf das Behandlungsergebnis nach autologer Knorpelzelltransplantation (ACT) am Kniegelenk

Factors that Influence Clinical Outcome following Autologous Chondrocyte Implantation for Cartilage Defects of the KneeP. Niemeyer1 , G. M. Salzmann1 , A. Hirschmüller1 , N. P. Südkamp1
  • 1Department für Orthopädie und Traumatologie, Universitätsklinikum Freiburg
Further Information

Publication History

Publication Date:
27 April 2011 (online)

Zusammenfassung

Studienziel: Die autologe Knorpelzelltransplantation (ACT) stellt ein mittlerweile anerkanntes Verfahren zur Behandlung umschriebener Knorpelschäden am Kniegelenk dar. Bei durchschnittlichen Erfolgsraten zwischen 85–90 % hängt das individuelle Behandlungsergebnis jedoch von vielen unterschiedlichen Parametern ab. Die vorliegende Arbeit gibt eine Übersicht über die relevanten klinischen Einflussfaktoren auf das Behandlungsergebnis nach ACT. Methodik: Die vorliegende Arbeit stellt eine nicht systematische Übersichtsarbeit zu Einflussfaktoren auf das Behandlungsergebnis nach autologer Knorpelzelltransplantation dar. Unter den Suchbegriffen „autologous chondrocyte implantation“, „autologous chondrocyte transplantation“, „prognostic factor“, „clinical outcome“, „cartilage repair“, „cartilage defect“ und „cartilage regeneration“ erfolgte im April 2010 eine Abfrage der gängigen medizinischen Datenbanken inkl. „Medline“, „Web of Science“ und „Ovid“. Die als relevant identifizierte Literatur war Basis für die vorliegende Übersicht. Ergebnisse: Die Einflussfaktoren auf das Behandlungsergebnis nach ACT lassen sich in patientenspezifische (Body-Mass-Index, Nikotinkonsum o. ä.) und defektassoziierte Faktoren (wie z. B. Defektgröße, -anzahl oder -lokalisation) unterscheiden. Zudem stellen Faktoren wie die Operationstechnik, die Zellqualität und die Nachbehandlung wichtige Parameter für das finale Behandlungsergebnis dar. Während einige dieser für die Prognose relevanten Parameter vorgegeben und unabänderlich sind, lassen sich andere im Vorfeld oder während der Behandlung beeinflussen. Schlussfolgerung: Die das Ergebnis nach autologer Knorpelzelltransplantation beeinflussenden Faktoren müssen unbedingt gemeinsam mit dem Patienten adressiert werden, um die Wahrscheinlichkeit auf ein gutes Ergebnis zu maximieren. Die vorliegende Arbeit gibt einen Überblick über die aktuelle Literatur vor dem Hintergrund der Fragestellung, welche Einflussfaktoren das Behandlungsergebnis eines Patienten mit Knorpelschaden am Kniegelenk nach autologer Knorpelzelltransplantation beeinflussten.

Abstract

Aim: Since its introduction in 1994, autologous chondrocyte implantation (ACI) has become an established surgical treatment for symptomatic isolated cartilage defects of the knee. Success rates vary between 80 and 95 % and the clinical outcome seems to depend on various individual factors. The aim of the present review article is to summarise factors that affect clinical outcome following ACI for treatment of symptomatic cartilage defects of the knee based upon the scientific literature available on this topic. Methods: The present publication represents a non-systematic review including publications which were considered relevant describing factors that influence clinical outcome following ACI for treatment of symptomatic full thickness cartilage defects of the knee. In order to identify relevant literature concerning complications following cartilage repair, medical databases including “medline”, “ovid” and “web of science” were searched for the terms “autologous chondrocyte implantation”, “autologous chondrocyte transplantation”, “prognostic factor”, “clinical outcome”, “cartilage repair”, “cartilage defect” and “cartilage regeneration”. The literature search was performed in April 2010. Results: Factors that influence clinical outcome following ACI for treatment of cartilage defects of the knee include patient-specific parameters on the one hand, such as body mass index, nicotine abusus, patients age, prior surgical treatment, duration of symptoms and more, and defect characteristics such as containment, defect location, defect size, number of defects treated, on the other hand. Furthermore, surgical technique, cell quality and rehabilitation seem to significantly influence the clinical outcome following autologous chondrocyte implantation. Among all factors identified as relevant for clinical outcome, some of these parameters are fixed and cannot be changed by either the surgeon nor the patient, while others can be influenced and even changed during the treatment and rehabilitation of a patient who underwent ACI. Conclusion: Knowledge of all relevant parameters that influence clinical outcome following ACI is essential in order to achieve an optimal clinical outcome in patients with cartilage defects of the knee. This paper presents a review of the scientific literature available which focuses on the questions as to what parameters influence the outcome of a patient following ACI for treatment of cartilage defects of the knee. No isolated factors could be identified that influence the outcome following ACI alone, but it seems that clinical outcome is influenced by many different parameters. These parameters should be considered carefully, at the time of decision about what kind of treatment is applied. Furthermore, the patient should be informed especially about those parameters which can be influenced by him-/herself in order to create good prerequisites for the surgical treatment.

Literatur

  • 1 Brittberg M, Lindahl A, Nilsson A et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.  N Engl J Med. 1994;  331 889-895
  • 2 Vasiliadis H S, Danielson B, Ljungberg M et al. Autologous chondrocyte implantation in cartilage lesions of the knee: long-term evaluation with magnetic resonance imaging and delayed Gadolinium-enhanced magnetic resonance imaging technique.  Am J Sports Med. 2010;  38 943-949
  • 3 Peterson L, Vasiliadis H S, Brittberg M et al. Autologous chondrocyte implantation: a long-term follow-up.  Am J Sports Med. 2010;  38 1117-1124
  • 4 Niemeyer P, Pestka J M, Kreuz P C et al. Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint.  Am J Sports Med. 2008;  36 2091-2099
  • 5 McNickle A G, L'Heureux D R, Yanke A B et al. Outcomes of autologous chondrocyte implantation in a diverse patient population.  Am J Sports Med. 2009;  37 1344-1350
  • 6 Krishnan S P, Skinner J A, Bartlett W et al. Who is the ideal candidate for autologous chondrocyte implantation?.  J Bone Joint Surg [Br]. 2006;  88 61-64
  • 7 Minas T, Gomoll A H, Rosenberger R et al. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques.  Am J Sports Med. 2009;  37 902-908
  • 8 Zaslav K, Cole B, Brewster R et al. A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the Study of the Treatment of Articular Repair (STAR) clinical trial.  Am J Sports Med. 2009;  37 42-55
  • 9 Reijman M, Pols H A, Bergink A P et al. Body mass index associated with onset and progression of osteoarthritis of the knee but not of the hip: the Rotterdam Study.  Ann Rheum Dis. 2007;  66 158-162
  • 10 Rogers M W, Wilder F V. The association of BMI and knee pain among persons with radiographic knee osteoarthritis: a cross-sectional study.  BMC Musculoskelet Disord. 2008;  9 163
  • 11 Jaiswal P K, Macmull S, Bentley G et al. Does smoking influence outcome after autologous chondrocyte implantation?: A case-controlled study.  J Bone Joint Surg [Br]. 2009;  91 1575-1578
  • 12 El-Zawawy H B, Gill C S, Wright R W et al. Smoking delays chondrogenesis in a mouse model of closed tibial fracture healing.  J Orthop Res. 2006;  24 2150-2158
  • 13 Oda H, Matsuzaki H, Tokuhashi Y et al. Degeneration of intervertebral discs due to smoking: experimental assessment in a rat-smoking model.  J Orthop Sci. 2004;  9 135-141
  • 14 Davies-Tuck M L, Wluka A E, Forbes A et al. Smoking is associated with increased cartilage loss and persistence of bone marrow lesions over 2 years in community-based individuals.  Rheumatology (Oxford). 2009;  48 1227-1231
  • 15 Ding C, Cicuttini F, Blizzard L et al. Smoking interacts with family history with regard to change in knee cartilage volume and cartilage defect development.  Arthritis Rheum. 2007;  56 1521-1528
  • 16 Gullahorn L, Lippiello L, Karpman R. Smoking and osteoarthritis: differential effect of nicotine on human chondrocyte glycosaminoglycan and collagen synthesis.  Osteoarthritis Cartilage. 2005;  13 942-943
  • 17 Behrens P, Bosch U, Bruns J et al. [Indications and implementation of recommendations of the working group “Tissue Regeneration and Tissue Substitutes” for autologous chondrocyte transplantation (ACT)].  Z Orthop Ihre Grenzgeb. 2004;  142 529-539
  • 18 Brittberg M. Autologous chondrocyte transplantation.  Clin Orthop Relat Res. 1999;  367 (Suppl.) S147-S155
  • 19 Minas T, Nehrer S. Current concepts in the treatment of articular cartilage defects.  Orthopedics. 1997;  20 525-538
  • 20 Brittberg M, Lindahl A, Homminga G et al. A critical analysis of cartilage repair.  Acta Orthop Scand. 1997;  68 186-191
  • 21 Peterson L, Minas T, Brittberg M et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee.  Clin Orthop Relat Res. 2000;  374 212-234
  • 22 Niemeyer P, Steinwachs M, Erggelet C et al. Autologous chondrocyte implantation for the treatment of retropatellar cartilage defects: clinical results referred to defect localisation.  Arch Orthop Trauma Surg. 2008;  128 1223-1231
  • 23 Minas T, Bryant T. The role of autologous chondrocyte implantation in the patellofemoral joint.  Clin Orthop Relat Res. 2005;  436 30-39
  • 24 Lindahl A, Brittberg M, Peterson L. Cartilage repair with chondrocytes: clinical and cellular aspects.  Novartis Found Symp. 2003;  249 175-186
  • 25 Hehne H J. Biomechanics of the patellofemoral joint and its clinical relevance.  Clin Orthop Relat Res. 1990;  258 73-85
  • 26 Farr J. Autologous chondrocyte implantation improves patellofemoral cartilage treatment outcomes.  Clin Orthop Relat Res. 2007;  463 187-194
  • 27 Niemeyer P, Lenz P, Kreuz P C et al. Chondrocyte-seeded type I/III collagen membrane for autologous chondrocyte transplantation: prospective 2-year results in patients with cartilage defects of the knee joint.  Arthroscopy. 2010;  26 1074-1082
  • 28 Mithoefer K, McAdams T, Williams R J et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis.  Am J Sports Med. 2009; 
  • 29 Cole B J, Pascual-Garrido C, Grumet R C. Surgical management of articular cartilage defects in the knee.  J Bone Joint Surg [Am]. 2009;  91 1778-1790
  • 30 Kreuz P C, Erggelet C, Steinwachs M R et al. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger?.  Arthroscopy. 2006;  22 1180-1186
  • 31 Mithoefer K, Williams 3rd R J, Warren R F et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study.  J Bone Joint Surg [Am]. 2005;  87 1911-1920
  • 33 Marlovits S, Zeller P, Singer P et al. Cartilage repair: generations of autologous chondrocyte transplantation.  Eur J Radiol. 2006;  57 24-31
  • 34 Gomoll A H, Probst C, Farr J et al. Use of a type I/III bilayer collagen membrane decreases reoperation rates for symptomatic hypertrophy after autologous chondrocyte implantation.  Am J Sports Med. 2009;  37 (Suppl. 1) 20S-23S
  • 35 Gooding C R, Bartlett W, Bentley G et al. A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered.  Knee. 2006;  13 203-210
  • 36 Zeifang F, Oberle D, Nierhoff C et al. Autologous chondrocyte implantation using the original periosteum-cover technique versus matrix-associated autologous chondrocyte implantation: a randomized clinical trial.  Am J Sports Med. 2010;  38 924-933
  • 37 Erggelet C, Kreuz P C, Mrosek E H et al. Autologous chondrocyte implantation versus ACI using 3D-bioresorbable graft for the treatment of large full-thickness cartilage lesions of the knee.  Arch Orthop Trauma Surg. 2010;  130 957-964
  • 38 Ossendorf C, Kaps C, Kreuz P C et al. Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results.  Arthritis Res Ther. 2007;  9 R41
  • 39 Van Assche D, Staes F, Van Caspel D et al. Autologous chondrocyte implantation versus microfracture for knee cartilage injury: a prospective randomized trial, with 2-year follow-up.  Knee Surg Sports Traumatol Arthrosc. 2010;  18 486-495
  • 40 Saris D B, Vanlauwe J, Victor J et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture.  Am J Sports Med. 2008;  36 235-246
  • 41 Saris D B, Vanlauwe J, Victor J et al. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture.  Am J Sports Med. 2009;  37 (Suppl. 1) 10S-19S
  • 42 Pietschmann M F, Horng A, Niethammer T et al. Cell quality affects clinical outcome after MACI procedure for cartilage injury of the knee.  Knee Surg Sports Traumatol Arthrosc. 2009;  17 1305-1311
  • 43 Pestka J M, Schmal H, Salzmann G et al. In vitro cell quality of articular chondrocytes assigned for autologous implantation in dependence of specific patient characteristics.  Arch Orthop Trauma Surg. 2010;  Epub ahead of print 17.12.2010
  • 44 Wondrasch B, Zak L, Welsch G H et al. Effect of accelerated weightbearing after matrix-associated autologous chondrocyte implantation on the femoral condyle on radiographic and clinical outcome after 2 years: a prospective, randomized controlled pilot study.  Am J Sports Med. 2009;  37 (Suppl. 1) 88S-96S
  • 45 Lorentzon R, Alfredson H, Hildingsson C. Treatment of deep cartilage defects of the patella with periosteal transplantation.  Knee Surg Sports Traumatol Arthrosc. 1998;  6 202-208
  • 46 Salter R B. The biologic concept of continuous passive motion of synovial joints. The first 18 years of basic research and its clinical application.  Clin Orthop Relat Res. 1989;  242 12-25
  • 47 Salter R B. The physiologic basis of continuous passive motion for articular cartilage healing and regeneration.  Hand Clin. 1994;  10 211-219
  • 48 Salter R B. History of rest and motion and the scientific basis for early continuous passive motion.  Hand Clin. 1996;  12 1-11
  • 49 O'Driscoll S W, Giori N J. Continuous passive motion (CPM): theory and principles of clinical application.  J Rehabil Res Dev. 2000;  37 179-188
  • 50 Hambly K, Bobic V, Wondrasch B et al. Autologous chondrocyte implantation postoperative care and rehabilitation: science and practice.  Am J Sports Med. 2006;  34 1020-1038
  • 51 Kreuz P C, Steinwachs M, Erggelet C et al. Importance of sports in cartilage regeneration after autologous chondrocyte implantation: a prospective study with a 3-year follow-up.  Am J Sports Med. 2007;  35 1261-1268
  • 52 Niemeyer P, Salzmann G, Steinwachs M et al. Presence of subchondral bone marrow edema at the time of treatment represents a negative prognostic factor for early outcome after autologous chondrocyte implantation.  Arch Orthop Trauma Surg. 2011;  131 283-291
  • 53 Vasara A I, Konttinen Y T, Peterson L et al. Persisting high levels of synovial fluid markers after cartilage repair: a pilot study.  Clin Orthop Relat Res. 2009;  467 267-272
  • 54 Schmal H, Mehlhorn A, Stoffel F et al. In vivo quantification of intraarticular cytokines in knees during natural and surgically induced cartilage repair.  Cytotherapy. 2009;  11 1065-1075

Dr. Philipp Niemeyer, MD

Department für Orthopädie und Traumatologie
Universitätsklinikum Freiburg

Hugstetter Straße 55

79098 Freiburg

Phone: 07 61/2 70 28 64

Fax: 07 61/2 70 25 20

Email: philipp.niemeyer@uniklinik-freiburg.de

    >