Int J Sports Med 2011; 32(5): 365-372
DOI: 10.1055/s-0031-1271678
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Effects of Jump Training with Negative versus Positive Loading on Jumping Mechanics

G. Markovic1 , S. Vuk2 , S. Jaric3
  • 1School of Kinesiology, Department of Kinesiology of Sport, University of Zagreb, Croatia
  • 2School of Kinesiology, Department of Kinesiology of Sport, Zagreb, Croatia
  • 3University of Delaware, Health, Nutrition, and Exercise Sciences, Newark, United States
Weitere Informationen


accepted after revision December 30, 2010

04. März 2011 (online)


We examined the effects of jump training with negative (−30% of the subject's body weight (BW)) vs. positive loading (+30% BW) on the mechanical behaviour of leg extensor muscles. 32 men were divided into control (CG), negative loading (NLG), or positive loading training group (PLG). Both training groups performed maximal effort countermovement jumps (CMJ) over a 7-week training period. The impact of training on the mechanical behaviour of leg extensor muscles was assessed through CMJ performed with external loads ranging from −30% BW to +30% BW. Both training groups showed significant (P≤0.013) increase in BW CMJ height (NLG: 9%, effect size (ES)=0.85, vs. PLG: 3.4%, ES=0.31), peak jumping velocity (v peak ; NLG: 4.1%; ES=0.80, P=0.011, vs. PLG: 1.4%, ES=0.24; P=0.017), and depth of the countermovement (Δh ecc ; NLG: 20%; ES=−1.64, P=0.004, vs. PLG: 11.4%; ES=−0.86, P=0.015). Although the increase in both the v peak and Δh ecc were expected to reduce the recorded ground reaction force, the indices of force- and power-production characteristics of CMJ remained unchanged. Finally, NLG (but not PLG) suggested load-specific improvement in the movement kinematic and kinetic patterns. Overall, the observed results revealed a rather novel finding regarding the effectiveness of negative loading in enhancing CMJ performance which could be of potential importance for further development of routine training protocols. Although the involved biomechanical and neuromuscular mechanisms need further exploration, the improved performance could be partly based on an altered jumping pattern that utilizes an enhanced ability of leg extensors to provide kinetic and power output during the concentric jump phase.


  • 1 Blazevich AJ, Jenkins DG. Effect of the movement speed of resistance training exercises on sprint and strength performance in concurrently training elite junior sprinters.  J Sports Sci. 2002;  20 981-990
  • 2 Cohen J. Statistical Power Analysis for the Behavioral Sciences.. New York: Academic Press; 1977
  • 3 Cormie P, McBride JM, McCaulley GO. Power-time, force-time, and velocity-time curve analysis of the countermovement jump: impact of training.  J Strength Cond Res. 2009;  23 177-186
  • 4 Cormie P, McCaulley GO, McBride JM. Power versus strength-power jump squat training: influence on the load-power relationship.  Med Sci Sports Exerc. 2007;  39 996-1003
  • 5 Cormie P, McGuigan MR, Newton RU. Adaptations in athletic performance following ballistic power vs strength training.  Med Sci Sports Exerc. 2010;  42 1582-1598
  • 6 Cormie P, McGuigan MR, Newton RU. Changes in the eccentric phase contribute to improved SSC performance after training.  Med Sci Sports Exerc. 2010;  42 1731-1744
  • 7 Cormie P, McGuigan MR, Newton RU. Influence of strength on the magnitude and mechanisms of adaptation to power training.  Med Sci Sports Exerc. 2010;  42 1566-1581
  • 8 Cronin J, Sleivert G. Challenges in understanding the influence of maximal power training on improving athletic performance.  Sports Med. 2005;  35 213-234
  • 9 Duchateau J, Hainaut K. Isometric or dynamic training: differential effects on mechanical properties of a human muscle.  J Appl Physiol. 1984;  56 296-301
  • 10 Faulkner JA, Clafin DR, McCully KK. Power output of fast and slow fibers from human skeletal muscles. In: Jones NL, McCartney N, McComas AJ (eds) Human Muscle Power Champaign, IL: Human Kinetics; 1986: 88-100
  • 11 Hakkinen K, Alen M, Komi PV. Changes in isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining.  Acta Physiol Scand. 1985;  125 573-585
  • 12 Hakkinen K, Komi PV. Effect of explosive type strength training on electromyographic and force production characteristics of leg extensor muscles during concentric and various stretch-shortening cycle exercises.  Scand J Sports Sci. 1985;  7 65-76
  • 13 Harris GR, Stone MH, O’Bryant HS, Proulx CM, Johnson RL. Short-term performance effects of high power, high force, or combined weight training method.  J Strength Cond Res. 2000;  14 14-20
  • 14 Harris NK, Cronin JB, Hopkins WG, Hansen KT. Squat jump training at maximal power loads vs. heavy loads: effect on sprint ability.  J Strength Cond Res. 2008;  22 1742-1749
  • 15 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 16 Hopkins WG. Estimating sample size for magnitude-based inferences.  Sportscience. 2006;  10 63-70
  • 17 Hunter JP, Marshall RN. Effects of power and flexibility training on vertical jump technique.  Med Sci Sports Exerc. 2002;  34 478-486
  • 18 Jaric S. A three-dimensional representation of maximum voluntary muscle contraction in man.  Period Biol. 1982;  84 140-142
  • 19 Jaric S, Markovic G. Leg muscles design: the maximum dynamic output hypothesis.  Med Sci Sports Exerc. 2009;  41 780-787
  • 20 Jaric S, Mirkov D, Markovic G. Normalizing physical performance tests for body size: a proposal for standardization.  J Strength Cond Res. 2005;  19 467-474
  • 21 Kaneko M, Fuchimoto T, Toji H, Suei K. Training effect of different loads on the force-velocity relationship and mechanical power output in human muscle.  Scand J Sports Sci. 1983;  5 50-55
  • 22 Kawamori N, Haff GG. The optimal training load for the development of muscular power.  J Strength Cond Res. 2004;  18 675-684
  • 23 Lyttle AD, Wilson GJ, Ostrowski KJ. Enhancing performance: maximal power versus combined weights and plyometrics training.  J Strength Cond Res. 1996;  10 173-179
  • 24 Markovic G. Does plyometric training improve vertical jump height? A meta-analytical review.  Br J Sports Med. 2007;  41 349-355 discussion 355
  • 25 Markovic G, Jaric S. Scaling of muscle power to body size: the effect of stretch-shortening cycle.  Eur J Appl Physiol. 2005;  95 11-19
  • 26 Markovic G, Jaric S. Positive and negative loading and mechanical output in maximum vertical jumping.  Med Sci Sports Exerc. 2007;  39 1757-1764
  • 27 Markovic G, Mikulic P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training.  Sports Med. 2010;  40 859-895
  • 28 McBride JM, Triplett-McBride T, Davie A, Newton RU. The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed.  J Strength Cond Res. 2002;  16 75-82
  • 29 Newton RU, Kraemer WJ. Developing explosive muscular power: implications for a mixed methods training strategy.  Strength & Conditioning. 1994;  16 20-31
  • 30 Newton RU, Kraemer WJ, Hakkinen K. Effects of ballistic training on preseason preparation of elite volleyball players.  Med Sci Sports Exerc. 1999;  31 323-330
  • 31 Newton RU, Rogers RA, Volek JS, Hakkinen K, Kraemer WJ. Four weeks of optimal load ballistic resistance training at the end of season attenuates declining jump performance of women volleyball players.  J Strength Cond Res. 2006;  20 955-961
  • 32 Nuzzo JL, McBride JM, Dayne AM, Israetel MA, Dumke CL, Triplett NT. Testing of the maximal dynamic output hypothesis in trained and untrained subjects.  Strength Cond J. 2010;  24 1269-1276
  • 33 Sheppard JM, Cormack S, Taylor KL, McGuigan MR, Newton RU. Assessing the force-velocity characteristics of the leg extensors in well-trained athletes: the incremental load power profile.  J Strength Cond Res. 2008;  22 1320-1326
  • 34 Sheppard JM, Dingley AA, Janssen I, Spratford W, Chapman DW, Newton RU. The effect of assisted jumping on vertical jump height in high-performance volleyball players.  J Sci Med Sport. 2010;  S1440-2440(1410)00157-X [pii]00110.01016/j.jsams.02010.00107.00006
  • 35 Stolen T, Chamari K, Castagna C, Wisloff U. Physiology of soccer: an update.  Sports Med. 2005;  35 501-536
  • 36 Toumi H, Best TM, Martin A, Poumarat G. Muscle plasticity after weight and combined (weight+jump) training.  Med Sci Sports Exerc. 2004;  36 1580-1588
  • 37 van den Tillaar R. Effect of different training programs on the velocity of overarm throwing: a brief review.  J Strength Cond Res. 2004;  18 388-396
  • 38 van Ingen Schenau GJ, Bobbert ME, de Haan A. Does elastic energy enhance work and efficiency in the stretch-shortening cycle.  J Appl Biomech. 1997;  13 389-415
  • 39 Vuk S, Markovic G, Jaric S. External loading and maximum dynamic output in vertical jumping: the role of training history.  Hum Mov Sci. 2011;  In press
  • 40 Wilson GJ, Newton RU, Murphy AJ, Humphries BJ. The optimal training load for the development of dynamic athletic performance.  Med Sci Sports Exerc. 1993;  25 1279-1286


Dr. Goran Markovic

School of Kinesiology

University of Zagreb

Department of Kinesiology of


Horvacanski zavoj 15

10000 Zagreb


Telefon: +385/1/3658 606

Fax: +385/1/3634 146