Zusammenfassung
In der vorliegenden Arbeit werden primäre Griffe anhand differenzierter Kraftverteilungsmuster
analysiert. Die Untersuchung erfolgte mit dem TUB-Sensorhandschuh, der mit 10 Drucksensoren
ausgerüstet war. 5 proximale Sensoren sind beugeseitig über den Grundgelenken und
5 distale Sensoren beugeseitig an den Fingerendgliedern befestigt. 9 Griffe werden
untersucht: der Kraftgriff in 4 Varianten, der Spitzgriff, der Präzisionsgriff und
der Feingriff in 3 Varianten. 10 Probanden nehmen an der Studie teil. Die Kraftverteilungsmuster
der 9 Griffe lassen sich eindeutig in 2 Gruppen unterteilen. Auf der einen Seite stehen
die Kraftgriffe, deren Kraftverteilungsmuster sich aus den an proximalen und an distalen
Sensoren gemessenen Kräften zusammensetzen. Auf der anderen Seite stehen der Spitz-,
der Präzisions- und die Feingriffe, deren Kraftverteilungsmuster nur aus an distalen
Sensoren gemessenen Kräften bestehen. Damit wird Napiers auf Anschauung beruhendes
Konzept der 2 dominierenden funktionellen Greifmuster messtechnisch bestätigt. Innerhalb
der Kraftgriffe verlagert sich mit zunehmender Größe der Greifkörper die Kraftaufnahme
immer weiter nach distal, sodass sich ihre Kraftverteilungsmuster denen der Präzisionsgriffe
annähern. Am Kleinfinger überwiegt der distale Sensor bereits bei den Kraftgriffen
mit kleinen Greifkörpern. Der Daumen ist bei Kraftgriffen mit kleinen Greifkörpern
zunächst von untergeordneter Bedeutung, da der Griff noch sehr dem Faustschluss ähnelt
und der Greifkörper zwischen den Fingern und der Hohlhand eingeklemmt gehalten werden
kann. Mit zunehmender Größe der Greifkörper wird er immer wichtiger, da seine Oppositionsstellung
die Voraussetzung für die Durchführung des Griffs darstellt.
Abstract
The present study analyses force distribution patterns during primary grips. 10 subjects
were examined using the TUB-sensor glove, which was equipped with 10 pressure sensors.
5 proximal sensors at the MCP joints and 5 distal sensors at the DIP joints were attached
palmarly. 9 different gripping motions were examined: the cylinder grip using 4 different
objects, the pinch grip and 4 different kinds of precision grips. The force distribution
patterns can be clearly divided into 2 groups. On the one hand there are the “power
grips”, in which the force is distributed over the proximal and distal sensors. On
the other hand there are the “precision grips”, which only show a force distribution
at the distal sensors. Therefore Napier's concept of the existence of primarily 2
gripping patterns, which is based on visual analysis, can be verified objectively.
For the “power grips” the force distribution is shifted further distally with increasing
size of the objects. In conclusion, their distribution pattern shifts towards the
pattern of the “precision grips”. At the small finger the distal sensor is already
dominant during the “power grips” of smaller objects. The thumb plays a subordinate
role during the “power grip” of smaller objects, since these grips are similar to
the “closing fist motion” and the objects can be held between the fingers and the
palm of the hand. However, with increasing object sizes the thumb gains more importance,
since its opposing movement is now required to accomplish the grip.
Schlüsselwörter
Kraftmessung - primäre Griffe - Sensorhandschuh - Kraftverteilungsmuster
Key words
power measurement - primary grips - sensor glove - force distribution patterns
Literatur
1
Balogun JA, Akomolafe CT, Amusa LO.
Grip strength: Effects of testing posture and elbow position.
Arch Phys Med Rehabil.
1991;
72
280-283
2
Lamoreaux L, Hoffer M.
The effect of wrist deviation on grip and pinch strength.
Clinical Orthopaedics and Related Research.
1995;
314
152-155
3
Mathiowetz V, Rennells C, Donahoe L.
Effect of elbow position on grip and key pinch strength.
J Hand Surg [Am].
1985;
10
694-697
4
O’Driscoll SW, Horii E, Ness R. et al .
The relationship between wrist position, grasp size, and grip strength.
J Hand Surg [Am].
1992;
17
169-177
5
Rice MS, Leonard C, Carter M.
Grip strengths and required forces in accessing everyday containers in a normal population.
Am J Occup Ther.
1997;
52
621-626
6
Chau N, Petry D, Bourgkard E. et al .
Comparison between estimates of hand volume and hand strengths with sex and age with
and without anthropometric data in healthy working people.
European J Epidemiology.
1997;
13
309-316
7
Chau N, Remy E, Petry D. et al .
Asymmetry correction equations for hand volume, grip and pinch strengths in healthy
working people.
European J Epidemiology.
1998;
14
71-77
8
Czitrom AA, Lister GD.
Measurement of grip strength in the diagnosis of wrist pain.
J Hand Surg [Am].
1988;
13
16-19
9
Mathiowetz V, Weber K, Volland G. et al .
Reliability and validity of grip and pinch strength evaluations.
J Hand Surg [Am].
1984;
9
222-226
10
Amis AA.
Variation of finger forces in maximal isometric grasp tests on a range of cylinder
diameters.
J Biomed Eng.
1987;
9
313-320
11
Radhakrishnan S, Nagaravindra M.
Analysis of hand forces in health and disease during maximum isometric grasping of
cylinders.
Med & Biol Eng & Comput.
1993;
31
372-376
12
Robertson LD, Mullinax CM, Brodowicz GR. et al .
The relationship between two power-grip testing devices and their utility in physical
capacity evaluations.
J Hand Therapy.
1993;
6
194-201
13
Kozin SH, Porter S, Clark P. et al .
The contribution of the intrinsic muscles to grip and pinch strength.
J Hand Surg [Am].
1999;
24
64-72
14
Mitterhauser MD, Muse VL, Dellon AL. et al .
Detection of submaximal effort with computer-assisted grip strength measurements.
J Occup Environ Med.
1997;
39
1220-1227
15
Lee JW, Rim K.
Measurement of finger joint angles and maximum finger forces during cylinder grip
activity.
J Biomed Eng.
1991;
13
152-162
16
Jensen TR, Radwin RG, Webster JG.
A conductive polymer sensor for measuring external finger forces.
J Biomechanics.
1991;
24
851-858
17
Malaviya GN, Husain S.
Finger dynamography. A complimentary technique for functional evaluation of the hand.
J Hand Surg [Br].
1993;
18
631-634
18
Pransky G, Feuerstein M, Himmelstein J. et al .
Measuring functional outcomes in work-related upper extremity disorders.
J Occup Environ Med.
1997;
39
1195-1202
19
Napier JR.
The prehensile movements of the human hand.
J Bone Joint Surg [Br].
1956;
38
902-913
20
Anakwe RE, Huntley JS, McEachan JE.
Grip strength and forearm circumference in a healthy population.
J Hand Surg [E].
2007;
32
203-209
21
Bourbonnais D, Frak V, Pilon JF. et al .
An instrumented cylinder measuring pinch force and orientation.
J Neuroeng Rehabil.
2008;
5
2
22
Wimer B, Dong RG, Welcome DE. et al .
Development of a new dynamometer for measuring grip strength applied on a cylindrical
handle.
Med Eng Phys.
2009;
31
695-704
23
Stokes HM.
The seriously uninjured hand – weakness of grip.
J Occup Med.
1983;
25
683-684
24
Stokes HM, Landrieu KW, Domangue B. et al .
Identification of low-effort patients through dynamometry.
J Hand Surg [Am].
1995;
20
1047-1056
25
Hildreth DH, Breitenbach WC, Lister GD. et al .
Detection of submaximal effort by use of the rapid exchange grip.
J Hand Surg [Am].
1989;
14
742-745
26
Joughin K, Gulati P, Mackinnon SE. et al .
An evaluation of rapid exchange and simultaneous grip tests.
J Hand Surg [Am].
1993;
18
245-252
27
Gilbert JC, Knowlton RG.
Simple method to determine sincerity of effort during a maximal isometric test of
grip strength.
Am J Phys Med.
1983;
62
135-144
28
Smith GA, Nelson RC, Sadoff SJ. et al .
Assessing sincerity of effort in maximal grip strength tests.
Am J Phys Med Rehabil.
1989;
68
73-80
29
Mentzel M, Hofmann F, Ebinger T. et al .
Kraftmessung an der Hand mit einem Sensorhandschuh bei Griffen mit submaximaler und
maximaler Kraft.
Handchir Mikrochir Plast Chir.
2001;
33
52-58
30
Gülke J, Wachter NJ, Katzmaier P. et al .
Detecting submaximal effort in power grip by observation of the strength distribution
pattern.
J Hand Surg [Br].
2007;
32
677-683
Korrespondenzadresse
Dr. Joachim Gülke
Universitätsklinik Ulm
Unfallchirurgie,
Hand-, Plastische und
Wiederherstellungschirurgie
Steinhövelstraße 9
89075 Ulm
Email: joachim.guelke@uniklinik-ulm.de