Ultraschall Med 2011; 32(6): 572-581
DOI: 10.1055/s-0031-1273443
Review

© Georg Thieme Verlag KG Stuttgart · New York

Brain Tumor Imaging with Transcranial Sonography: State of the Art and Review of the Literature

Bildgebung von Hirntumoren mit transkranieller Sonografie: aktueller Stand und LiteraturübersichtK. van Leyen1 , C. Klötzsch2, 3 , J. U. Harrer4, 5
  • 1Neurosurgery, Kantonsspital St. Gallen
  • 2Neurology, Kliniken Schmieder Allensbach
  • 3Neurology, Hegau Klinikum Singen
  • 4Neurology, Caritas Klinik St. Theresia Saarbrücken
  • 5Neurology, RWTH Aachen University Hospital
Further Information

Publication History

received: 7.2.2011

accepted: 11.5.2011

Publication Date:
27 October 2011 (online)

Zusammenfassung

Transkranielle Sonografie (TCS) ist eine weitverbreitete nicht invasive Methode zur Untersuchung von Hirn, Hirngefäßen, Hirnperfusion und deren Pathologien. Die transkranielle B-Bild-Sonografie kam in den frühen 90er-Jahren auf. Während diese und der Farbdoppler eine klinische Routineanwendung insbesondere in der operativen Neurochirurgie ist, findet die Perfusionsbildgebung eher in der Forschung Anwendung. Das Ziel dieser Arbeit ist, eine Übersicht zu den verschiedenen Ultraschallmodalitäten und deren Anwendung in der Hirntumor-Sonografie zu geben.

Abstract

Transcranial sonography (TCS) is a widely used non-invasive bedside method to evaluate the brain, its vessels, perfusion and pathologies. Transcranial brain tumor sonography emerged in the early nineties and while B-mode imaging and Color-Doppler have acquired widespread use, especially for intraoperative imaging, other ultrasound modalities such as Perfusion Imaging are applied more in the research field. The aim of this review is to give an overview of the different ultrasound modalities and their respective application in sonographic brain tumor imaging.

References

  • 1 Becker G, Seufert J, Bogdahn U et al. Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography.  Neurology. 1995;  45 182-184
  • 2 Becker T, Becker G, Seufert J et al. Parkinson’s disease and depression: evidence for an alteration of the basal limbic system detected by transcranial sonography.  J Neurol Neurosurg Psychiatry. 1997;  63 590-596
  • 3 Mäurer M, Shambal S, Berg D et al. Differentiation between intracerebral hemorrhage and ischemic stroke by transcranial color-coded duplex-sonography.  Stroke. 1998;  29 2563-2567
  • 4 Becker G, Winkler J, Bogdahn U. Transcranial color-coded real time sonography in adults. Part 2: Cerebral hemorrhage and tumors.  Ultraschall in Med. 1991;  12 211-217
  • 5 Becker G, Perez J, Krone A et al. Transcranial color-coded real-time sonography in the evaluation of intracranial neoplasms and arteriovenous malformations.  Neurosurgery. 1992;  31 420-428
  • 6 Bogdahn U, Fröhlich T, Becker G et al. Vascularization of primary central nervous system tumors: detection with contrast-enhanced transcranial color-coded real-time sonography.  Radiology. 1994;  192 141-148
  • 7 Sosna J, Barth M M, Kruskal J B et al. Intraoperative sonography for neurosurgery.  J Ultrasound Med. 2005;  24 1671-1682
  • 8 Rohde V, Coenen V A. Intraoperative 3-dimensional ultrasound for resection control during brain tumour removal: preliminary results of a prospective randomized study.  Acta Neurochir Suppl. 2011;  109 187-190
  • 9 Becker G, Krone A, Koulis D et al. Reliability of transcranial colour-coded real-time sonography in assessment of brain tumours: correlation of ultrasound, computed tomography and biopsy findings.  Neuroradiology. 1994;  36 585-590
  • 10 Wang J, Liu X, Hou W H et al. The relationship between intra-operative ultrasonography and pathological grade in cerebral glioma.  J Int Med Res. 2008;  36 1426-1434
  • 11 Ohue S, Kumon Y, Nagato S et al. Evaluation of intraoperative brain shift using an ultrasound-linked navigation system for brain tumor surgery.  Neurol Med Chir. 2010;  50 291-300
  • 12 Becker G, Krone A, Schmitt K et al. Preoperative and postoperative follow-up in high-grade gliomas: comparison of transcranial color-coded real-time sonography and computed tomography findings.  Ultrasound Med Biol. 1995;  21 1123-1135
  • 13 Mäurer M, Becker G, Wagner R et al. Early postoperative transcranial sonography (TCS), CT, and MRI after resection of high grade glioma: evaluation of residual tumour and its influence on prognosis.  Acta Neurochir. 2000;  142 1089-1097
  • 14 Harrer J U, Mayfrank L, Mull M et al. Second harmonic imaging: a new ultrasound technique to assess human brain tumour perfusion.  J Neurol Neurosurg Psychiatry. 2003;  74 333-338
  • 15 Harrer J U, Hornen S, Oertel M F et al. Comparison of perfusion harmonic imaging and perfusion MR imaging for the assessment of microvascular characteristics in brain tumors.  Ultraschall in Med. 2008;  29 45-52
  • 16 Lin K L, Wang H S, Lui T N. Diagnosis and follow-up of craniopharyngiomas with transcranial Doppler sonography.  J Ultrasound Med. 2002;  21 801-806
  • 17 Becker G, Hofmann E, Woydt M et al. Postoperative neuroimaging of high-grade gliomas: comparison of transcranial sonography, magnetic resonance imaging, and computed tomography.  Neurosurgery. 1999;  44 469-478
  • 18 Vordermark D, Becker G, Flentje M et al. Transcranial sonography: integration into target volume definition for glioblastoma multiforme.  Int J Radiat Oncol Biol Phys. 2000;  47 565-571
  • 19 Berland L L, Bryan C R, Sekar B C et al. Sonographic examination of the adult brain.  J Clin Ultrasound. 1988;  16 337-345
  • 20 Gerriets T, Stolz E, König S et al. Sonographic monitoring of midline shift in space-occupying stroke: an early outcome predictor.  Stroke. 2001;  32 442-447
  • 21 Bauer A, Bogdahn U, Haase A et al. 3-dimensional echo-enhanced transcranial Doppler ultrasound diagnosis.  Radiologe. 1998;  38 394-398
  • 22 Woydt M, Horowski A, Krauss J et al. Three-dimensional intraoperative ultrasound of vascular malformations and supratentorial tumors.  J Neuroimaging. 2002;  12 28-34
  • 23 Kanno H, Ozawa Y, Sakata K et al. Intraoperative power Doppler ultrasonography with a contrast-enhancing agent for intracranial tumors.  J Neurosurg. 2005;  102 295-301
  • 24 Woydt M, Vince G H, Krauss J et al. New ultrasound techniques and their application in neurosurgical intra-operative sonography.  Neurol Res. 2001;  23 697-705
  • 25 Unsgaard G, Gronningsaeter A, Ommedal S et al. Brain operations guided by real-time two-dimensional ultrasound: new possibilities as a result of improved image quality.  Neurosurgery. 2002;  51 402-412
  • 26 Scholz M, Noack V, Pechlivanis I et al. Vibrography during tumor neurosurgery.  J Ultrasound Med. 2005;  24 985-992
  • 27 Woydt M, Krone A, Becker G et al. Correlation of intra-operative ultrasound with histopathologic findings after tumour resection in supratentorial gliomas. A method to improve gross total tumour resection.  Acta Neurochir. 1996;  138 1391-1398
  • 28 Nagelhus Hernes T A, Lindseth F, Selbekk T et al. Computer-assisted 3D ultrasound-guided neurosurgery: technological contributions, including multimodal registration and advanced display, demonstrating future perspectives.  Int J Med Robot. 2006;  2 45-59
  • 29 Gulati S, Berntsen E M, Solheim O et al. Surgical resection of high-grade gliomas in eloquent regions guided by blood oxygenation level dependent functional magnetic resonance imaging, diffusion tensor tractography, and intraoperative navigated 3D ultrasound.  Minim Invasive Neurosurg. 2009;  52 17-24
  • 30 Engelhardt M, Hansen C, Eyding J et al. Feasibility of contrast-enhanced sonography during resection of cerebral tumours: initial results of a prospective study.  Ultrasound Med Biol. 2007;  33 571-575
  • 31 Postert T, Muhs A, Meves S et al. Transient response harmonic imaging.  Stroke. 1998;  29 1901-1907
  • 32 Seidel G, Meyer K. Harmonic imaging – a new method for the sonographic assessment of cerebral perfusion.  Eur J Ultrasound. 2001;  14 103-113
  • 33 Meairs S, Daffertshofer M, Neff W et al. Pulse-inversion contrast harmonic imaging: ultrasonographic assessment of cerebral perfusion.  Lancet. 2000;  355 550-551
  • 34 Harrer J U, Klötzsch C. Second harmonic imaging of the human brain: The practicability of coronal insonation planes and alternative perfusion parameters.  Stroke. 2002;  33 1530-1535
  • 35 Harrer J U, Klötzsch C, Stracke C P et al. Cerebral perfusion sonography in comparison with perfusion MRT: a study with healthy volunteers.  Ultraschall in Med. 2004;  25 263-269
  • 36 Schlachetzki F, Hoelscher T, Dorenbeck U et al. Sonographic parenchymal and brain perfusion imaging: preliminary results in four patients following decompressive surgery for malignant middle cerebral artery infarct.  Ultrasound Med Biol. 2001;  27 21-31
  • 37 Seidel G, Albers T, Meyer K et al. Perfusion harmonic imaging in acute middle cerebral artery infarction.  Ultrasound Med Biol. 2003;  29 1245-1251
  • 38 Eyding J, Krogias C, Wilkening W et al. Detection of cerebral perfusion abnormalities in acute stroke using phase inversion harmonic imaging (PIHI): preliminary results.  J Neurol Neurosurg Psychiatry. 2004;  75 926-929
  • 39 Harrer J U, Möller-Hartmann W, Oertel M F et al. Perfusion imaging of high-grade gliomas: a comparison between contrast harmonic and magnetic resonance imaging. Technical note.  J Neurosurg. 2004;  101 700-703
  • 40 Vicenzini E, Delfini R, Magri F et al. Semiquantitative human cerebral perfusion assessment with ultrasound in brain space-occupying lesions: preliminary data.  J Ultrasound Med. 2008;  27 685-692
  • 41 Zhu X P, Li K L, Kamaly-Asl I D et al. Quantification of endothelial permeability, leakage space, and blood volume in brain tumours using combined T 1 and T 2* contrast-enhanced dynamic MR imaging.  J Magn Reson Imaging. 2000;  11 575-585
  • 42 Harrer J U, Parker G J, Haroon H A et al. Comparative study of methods for determining vascular permeability and blood volume in human gliomas.  J Magn Reson Imaging. 2004;  20 748-757
  • 43 Mangla R, Singh G, Ziegelitz D et al. Changes in relative cerebral blood volume 1 month after radiation-temozolomide therapy can help predict overall survival in patients with glioblastoma.  Radiology. 2010;  256 575-584
  • 44 Schrope B, Newhouse V L. Second harmonic ultrasonic blood perfusion measurement.  Ultrasound Med Biol. 1993;  19 567-579
  • 45 Burns P N. Harmonic imaging with ultrasound contrast agents.  Clin Radiol. 1996;  51 50-55
  • 46 Harrer J U, Hornen S, Valaikiene J et al. Transcranial ultrasound perfusion imaging: implementation of a low MI and a high frame rate.  Ultraschall in Med. 2007;  28 380-386
  • 47 Harrer J U, Valaikiene J, Koch H et al. Transcranial perfusion sonography using a low mechanical index and pulse inversion harmonic imaging: reliability, inter-/intraobserver variability.  Ultraschall in Med. 2011;  32 S95-S101
  • 48 Seidel G, Meyer K. Harmonic imaging – a new method for the sonographic assessment of cerebral perfusion.  Eur J Ultrasound. 2001;  14 103-113
  • 49 Bartels E, Henning S, Wellmer A et al. Bestimmung des zerebralen Perfusionsdefizits bei Schlaganfallpatienten mittels der neuen transkraniellen kontrastmittelverstärkten CPS™-Technologie – Vorläufige Ergebnisse.  Ultraschall in Med. 2005;  26 478-486
  • 50 Meyer K, Seidel G. Transcranial contrast diminution imaging of the human brain: A pilot study in healthy volunteers.  Ultrasound in Med Biol. 2002;  28 1433-1437
  • 51 Eyding J, Wilkening W, Krogias C et al. Validation of the depletion kinetic in semiquantitative ultrasonographic cerebral perfusion imaging using 2 different techniques of data acquisition.  J Ultrasound Med. 2004;  23 1035-1040
  • 52 Kier C, Meyer-Wiethe K, Seidel G et al. Improved modelling of ultrasound contrast agent diminution for blood perfusion analysis.  Med Image Comput Comput Assist Interv. 2009;  12 935-942
  • 53 Eyding J, Wilkening W, Reckhardt M et al. Contrast burst depletion imaging (CODIM): a new imaging procedure and analysis method for semiquantitative ultrasonic perfusion imaging.  Stroke. 2003;  34 77-83
  • 54 Meyer-Wiethe K, Cangur H, Seidel G U. Comparison of different mathematical models to analyze diminution kinetics of ultrasound contrast enhancement in a flow phantom.  Ultrasound Med Biol. 2005;  31 93-98
  • 55 Kern R, Perren F, Schoenberger K et al. Ultrasound microbubble destruction imaging in acute middle cerebral artery stroke.  Stroke. 2004;  35 1665-1670
  • 56 Eyding J, Nolte-Martin A, Krogias C et al. Changes of contrast-specific ultrasonic cerebral perfusion patterns in the course of stroke; reliability of region-wise and parametric imaging analysis.  Ultrasound Med Biol. 2007;  33 329-334
  • 57 Strobel D, Kleinecke C, Hänsler J et al. Contrast-enhanced sonography for the characterisation of hepatocellular carcinomas -correlation with histological differentiation.  Ultraschall in Med. 2005;  26 270-276
  • 58 Steppan I, Reimer D, Müller-Holzner E et al. Breast cancer in women: evaluation of benign and malignant axillary lymph nodes with contrast-enhanced ultrasound.  Ultraschall in Med. 2010;  31 63-67
  • 59 Hölscher T, Draganski B, Postert T et al. Brain perfusion imaging of a craniopharyngioma by transcranial duplex sonography.  J Neuroimaging. 2003;  13 303-306
  • 60 Vicenzini E, Ricciardi M C, Puccinelli F et al. Cerebral perfusion in a high-grade glioma evaluated with sonographic contrast pulse sequencing technology.  J Ultrasound Med. 2006;  25 1215-1218
  • 61 Phillips P, Gardner E. Contrast-agent detection and quantification.  Eur Radiol. 2004;  14 P4-P10
  • 62 Schroeder R J, Hauff P, Bartels T et al. Tumor vascularization in experimental melanomas: correlation between unenhanced and contrast enhanced power Doppler imaging and histological grading.  Ultrasound Med Biol. 2001;  27 761-771
  • 63 McCarville M B, Streck C J, Dickson P V et al. Angiogenesis inhibitors in a murine neuroblastoma model: quantitative assessment of intratumoral blood flow with contrast-enhanced gray-scale US.  Radiology. 2006;  240 73-81
  • 64 Cosgrove D, Lassau N. Imaging of perfusion using ultrasound.  Eur J Nucl Med Mol Imaging. 2010;  37 S65-S85
  • 65 Kiessling F, Huppert J, Palmowski M. Functional and molecular ultrasound imaging: concepts and contrast agents.  Curr Med Chem. 2009;  16 627-642
  • 66 Korpanty G, Carbon J G, Grayburn P A et al. Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature.  Clin Cancer Res. 2007;  13 323-330
  • 67 Liu H L, Hua M Y, Chen P Y et al. Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment.  Radiology. 2010;  255 415-425
  • 68 Burke C W, Price R J. Contrast ultrasound targeted treatment of gliomas in mice via drug-bearing nanoparticle delivery and microvascular ablation.  J Vis Exp. 2010;  15 pii: 2145 DOI: 10.3791 / 2145
  • 69 Burke C W, Klibanov A L, Sheehan J P et al. Inhibition of glioma growth by microbubble activation in a subcutaneous model using low duty cycle ultrasound without significant heating.  J Neurosurg. 2011;  [Epub ahead of print]
  • 70 Loo van de S, Walter U, Behnke S et al. Reproducibility and diagnostic accuracy of substantia nigra sonography for the diagnosis of Parkinson’s disease.  J Neurol Neurosurg Psychiatry. 2010;  81 1087-1092
  • 71 Harrer J U, Tsivgoulis G. Transcranial sonography for monitoring hydrocephalus: An underestimated imaging modality.  Neurology. 2011;  [Epub ahead of print]

Dr. Judith U. Harrer

Neurology, Caritas Klinik St. Theresia

Rheinstr. 2

66113 Saarbrücken

Germany

Phone:  ++ 49/6 81/40 60

Fax:  ++ 49/6 81/4 06 31 03

Email: judith.harrer@web.de

    >