Zusammenfassung
Das bessere Verständnis genetischer Nierenerkrankungen
hat in den letzten zehn Jahren einen immensen Wissenszuwachs über
grundlegende Funktionsmechanismen der Niere erbracht. Einblicke
in pathophysiologische Grundprinzipien häufiger, teils
vererbter, teils erworbener Nierenerkrankungen konnten dabei durch
die Erforschung seltener genetischer Erkrankungen gewonnen werden
und dienen nun als Ausgangspunkt zukünftiger Therapien.
So sind für die sehr häufige autosomal dominante
polyzystische Nierenerkrankung aufgrund der Ergebnisse aus der Grundlagenforschung
bereits verschiedene multizentrische klinische Studien etabliert
worden. Zunehmend zeigt sich außerdem der Einfluss genetischer
Aspekte bei häufigen Nierenerkrankungen wie der diabetischen
Nephropathie. Der vorliegende Artikel gibt einen Überblick über wesentliche
aktuelle Entwicklungen auf dem Gebiet der genetischen Nierenerkrankungen.
Abstract
The improved understanding of genetic kidney diseases has given
rise to a more detailed understanding of kidney function within
the last decade. Insights into the pathophysiological principles
of frequent kidney diseases – partly inherited, partly
acquired – have been obtained by the investigation of rare
genetic disorders and can now serve as a starting point for the
development of novel therapeutic strategies. In this way various clinical
multicenter trials, which are based on the observations made in
basic science have been established for the very common autosomal
dominant polycystic kidney disease. Furthermore, the influence of
genetic aspects on frequent kidney diseases, e. g. diabetic
nephropathy, is becoming more obvious. This article aims to give
an overview over essential recent development in the field of genetic
kidney diseases.
Schlüsselwörter
Genetik - vererbte Nierenerkrankungen - Podozyt - Nephrotisches Syndrom - Zilien -
Zystennieren - M. Fabry
Keywords
genetics - inherited kidney diseases - podocyte - nephrotic syndrome - cilia - cystic
kidney disease - M. Fabry
Literatur
- 1
Alamowitch S, Plaisier E, Favrole P. et al .
Cerebrovascular disease related to COL4A1
mutations in HANAC syndrome.
Neurology.
2009;
73
1873-1882
- 2
Benzing T.
Signaling at the slit diaphragm.
J Am Soc Nephrol.
2004;
15
1382-1391
- 3
Bostrom M A, Freedman B I, Langefeld C D. et al .
Association of
adiponectin gene polymorphisms with type 2 diabetes in an African
American population enriched for nephropathy.
Diabetes.
2009;
58
499-504
- 4
Boyer O, Benoit G, Gribouval O. et al .
Mutational analysis of the PLCE1 gene in steroid
resistant nephrotic syndrome.
J Med Genet.
2010;
47
445-452
- 5
Brown E J, Schlondorff J S, Becker D J. et al .
Mutations in the
formin gene INF2 cause focal segmental glomerulosclerosis.
Nat
Genet.
2010;
42
72-76
- 6
Buscher A K, Kranz B, Buscher R. et al .
Immunosuppression and Renal Outcome in
Congenital and Pediatric Steroid-Resistant Nephrotic Syndrome.
Clin J Am Soc Nephrol.
2010;
5
2075-2084
- 7
Chambers J C, Zhang W, Lord G M. et al .
Genetic loci influencing kidney function
and chronic kidney disease.
Nat Genet.
2010;
42
373-375
- 8
Cochat P, Fargue S, Mestrallet G. et al .
Disease recurrence in paediatric renal transplantation.
Pediatr Nephrol.
2009;
24
2097-2108
- 9
Danielsen H, Pedersen E B, Nielsen A H. et al .
Expansion of extracellular
volume in early polycystic kidney disease.
Acta Med Scand.
1986;
219
399-405
- 10
Fischer E, Legue E, Doyen A. et
al .
Defective planar cell polarity in polycystic kidney
disease.
Nat Genet.
2006;
38
21-23
- 11
Fliegauf M, Benzing T, Omran H.
When cilia go bad: cilia defects and ciliopathies.
Nat
Rev Mol Cell Biol.
2007;
8
880-893
- 12
Freedman B I, Kopp J B, Langefeld C D. et al .
The Apolipoprotein L1 (APOL1) Gene
and Nondiabetic Nephropathy in African Americans.
J Am
Soc Nephrol.
2010;
21
1422-1426
- 13
Friedman D J, Talbert M E, Bowden D W. et al .
Functional ENTPD1 polymorphisms
in African Americans with diabetes and end-stage renal disease.
Diabetes.
2009;
58
999-1006
- 14
Gaspar P, Herrera J, Rodrigues D. et al .
Frequency of Fabry disease in male and female
haemodialysis patients in Spain.
BMC Med Genet.
2010;
11
19
- 15
Genovese G, Friedman D J, Ross M D. et al .
Association of trypanolytic
ApoL1 variants with kidney disease in African Americans.
Science.
2010;
329
841-845
- 16
Gerdes J M, Davis E E, Katsanis N.
The vertebrate primary cilium in development, homeostasis, and
disease.
Cell.
2009;
137
32-45
- 17
Gross O, Kashtan C E.
Treatment of Alport
syndrome: beyond animal models.
Kidney Int.
2009;
76
599-603
- 18
Hildebrandt F.
Genetic kidney diseases.
Lancet.
2010;
375
1287-1295
- 19
Hinkes B, Vlangos C, Heeringa S. et al .
Specific podocin mutations correlate with
age of onset in steroid-resistant nephrotic syndrome.
J
Am Soc Nephrol.
2008;
19
365-371
- 20
Hinkes B G, Mucha B, Vlangos C N. et al .
Nephrotic syndrome in the first year of life:
two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1,
and LAMB2).
Pediatrics.
2007;
119
e907-919
- 21
Huber T B, Kwoh C, Wu H. et
al .
Bigenic mouse models of focal segmental glomerulosclerosis
involving pairwise interaction of CD2AP, Fyn, and synaptopodin.
J Clin Invest.
2006;
116
1337-1345
- 22
Hudson B G, Tryggvason K, Sundaramoorthy M. et al .
Alport’s syndrome, Goodpasture’s
syndrome, and type IV collagen.
N Engl J Med.
2003;
348
2543-2556
- 23
Kalluri R, Shield C F, Todd P. et al .
Isoform switching of type IV collagen is
developmentally arrested in X-linked Alport syndrome leading to
increased susceptibility of renal basement membranes to endoproteolysis.
J Clin Invest.
1997;
99
2470-2478
- 24
Kao W H, Klag M J, Meoni L A. et al .
MYH9 is associated with
nondiabetic end-stage renal disease in African Americans.
Nat
Genet.
2008;
40
1185-1192
- 25
Katayama K, Kawano M, Naito I. et al .
Irradiation prolongs survival of Alport mice.
J Am Soc Nephrol.
2008;
19
1692-1700
- 26
Kestila M, Lenkkeri U, Mannikko M. et al .
Positionally cloned gene for a novel glomerular
protein-nephrin – is mutated in congenital nephrotic syndrome.
Mol Cell.
1998;
1
575-582
- 27
Knebelmann B, Kurschat C, Thadhani R.
Enzyme therapy for Fabry’s disease: registered for
success?.
Lancet.
2009;
374
1950-1951
- 28
Kopp J B, Smith M W, Nelson G W. et al .
MYH9 is a major-effect risk
gene for focal segmental glomerulosclerosis.
Nat Genet.
2008;
40
1175-1184
- 29
Kottgen A, Glazer N L, Dehghan A. et al .
Multiple loci associated with indices of renal
function and chronic kidney disease.
Nat Genet.
2009;
41
1191-1198
- 30
Kottgen A, Hwang S J, Larson M G. et al .
Uromodulin levels associate
with a common UMOD variant and risk for incident CKD.
J
Am Soc Nephrol.
2010;
21
337-344
- 31
Kuusniemi A M, Qvist E, Sun Y. et
al .
Plasma exchange and retransplantation in recurrent
nephrosis of patients with congenital nephrotic syndrome of the Finnish
type (NPHS1).
Transplantation.
2007;
83
1316-1323
- 32
LeBleu V, Sugimoto H, Mundel T M. et al .
Stem cell therapies benefit Alport syndrome.
J Am Soc Nephrol.
2009;
20
2359-2370
- 33
Lowik M, Levtchenko E, Westra D. et al .
Bigenic heterozygosity and the development
of steroid-resistant focal segmental glomerulosclerosis.
Nephrol Dial
Transplant.
2008;
23
3146-3151
- 34
Machuca E, Hummel A, Nevo F. et
al .
Clinical and epidemiological assessment of steroid-resistant
nephrotic syndrome associated with the NPHS2 R229Q variant.
Kidney
Int.
2009;
75
727-735
- 35
Masyuk T V, Masyuk A I, Torres V E. et al .
Octreotide inhibits hepatic
cystogenesis in a rodent model of polycystic liver disease by reducing
cholangiocyte adenosine 3’,5’-cyclic monophosphate.
Gastroenterology.
2007;
132
1104-1116
- 36
Mehta A, Beck M, Elliott P. et
al .
Enzyme replacement therapy with agalsidase alfa
in patients with Fabry’s disease: an analysis of registry
data.
Lancet.
2009;
374
1986-1996
- 37
Nishio S, Tian X, Gallagher A R. et al .
Loss of oriented cell division does not
initiate cyst formation.
J Am Soc Nephrol.
2010;
21
295-302
- 38
Patel V, Chowdhury R, Igarashi P.
Advances in the pathogenesis and treatment of polycystic kidney
disease.
Curr Opin Nephrol Hypertens.
2009;
18
99-106
- 39
Pattaro C, Aulchenko Y S, Isaacs A. et al .
Genome-wide linkage analysis of serum creatinine
in three isolated European populations.
Kidney Int.
2009;
76
297-306
- 40
Pazour G J.
Intraflagellar transport and cilia-dependent renal disease:
the ciliary hypothesis of polycystic kidney disease.
J
Am Soc Nephrol.
2004;
15
2528-2536
- 41
Philippe A, Nevo F, Esquivel E L. et al .
Nephrin mutations can cause childhood-onset
steroid-resistant nephrotic syndrome.
J Am Soc Nephrol.
2008;
19
1871-1878
- 42
Plaisier E, Gribouval O, Alamowitch S. et al .
COL4A1 mutations and hereditary angiopathy,
nephropathy, aneurysms, and muscle cramps.
N Engl J Med.
2007;
357
2687-2695
- 43
Ravine D, Gibson R N, Walker R G. et al .
Evaluation of ultrasonographic
diagnostic criteria for autosomal dominant polycystic kidney disease
1.
Lancet.
1994;
343
824-827
- 44
Reiser J, Polu K R, Moller C C. et al .
TRPC6 is a glomerular slit
diaphragm-associated channel required for normal renal function.
Nat Genet.
2005;
37
739-744
- 45
Schermer B, Benzing T.
Lipid-protein interactions
along the slit diaphragm of podocytes.
J Am Soc Nephrol.
2009;
20
473-478
- 46
Sekine T, Konno M, Sasaki S. et al .
Patients with Epstein-Fechtner syndromes owing
to MYH9 R702 mutations develop progressive proteinuric renal disease.
Kidney Int.
2010;
78
207-214
- 47
Serra A L, Poster D, Kistler A D. et al .
Sirolimus and kidney growth in autosomal dominant
polycystic kidney disease.
N Engl J Med.
2010;
363
820-829
- 48
Shillingford J M, Murcia N S, Larson C H. et al .
The mTOR pathway
is regulated by polycystin-1, and its inhibition reverses renal
cystogenesis in polycystic kidney disease.
Proc Natl Acad
Sci U S A.
2006;
103
5466-5471
- 49
Shillingford J M, Piontek K B, Germino G G. et al .
Rapamycin ameliorates
PKD resulting from conditional inactivation of Pkd1.
J
Am Soc Nephrol.
2010;
21
489-497
- 50
Spada M, Pagliardini S, Yasuda M. et al .
High incidence of later-onset fabry disease
revealed by newborn screening.
Am J Hum Genet.
2006;
79
31-40
- 51
Srivastava T, Garola R E, Kestila M. et al .
Recurrence of proteinuria following renal
transplantation in congenital nephrotic syndrome of the Finnish
type.
Pediatr Nephrol.
2006;
21
711-718
- 52
Sugimoto H, Mundel T M, Sund M. et al .
Bone-marrow-derived stem cells repair basement
membrane collagen defects and reverse genetic kidney disease.
Proc Natl Acad Sci U S A.
2006;
103
7321-7326
- 53
Torres V E, Harris P C.
Autosomal dominant
polycystic kidney disease: the last 3 years.
Kidney Int.
2009;
76
149-168
- 54
van Keimpema L, Nevens F, Vanslembrouck R. et al .
Lanreotide reduces the volume of polycystic
liver: a randomized, double-blind, placebo-controlled trial.
Gastroenterology.
2009;
137
1661-1668
e1661 – 1662
- 55
Walz G, Budde K, Mannaa M. et
al .
Everolimus in patients with autosomal dominant
polycystic kidney disease.
N Engl J Med.
2010;
363
830-840
- 56
Winn M P, Conlon P J, Lynn K L. et al .
A mutation in the TRPC6
cation channel causes familial focal segmental glomerulosclerosis.
Science.
2005;
308
1801-1804
- 57
Yoder B K, Richards W G, Sweeney W E. et al .
Insertional mutagenesis
and molecular analysis of a new gene associated with polycystic
kidney disease.
Proc Assoc Am Physicians.
1995;
107
314-323
- 58
Zenker M, Machuca E, Antignac C.
Genetics of nephrotic syndrome: new insights into molecules
acting at the glomerular filtration barrier.
J Mol Med.
2009;
87
849-857
Dr. Max Christoph Liebau
Klinik und Poliklinik für allgemeine
Kinderheilkunde
und Nephrologisches Forschungslabor
der Klinik IV
für Innere Medizin, Nephrologie
und Allgemeine Innere Medizin
Uniklinik Köln
Kerpener Str. 62
50924 Köln
Telefon: 0221-478-4359
Fax: 0221-478-89041
eMail: max.liebau@uk-koeln.de