RSS-Feed abonnieren
DOI: 10.1055/s-0031-1275836
© Georg Thieme Verlag KG Stuttgart · New York
Neue Entwicklungen auf dem Gebiet der genetischen Nierenerkrankungen
Recent developments in genetic kidney diseasesPublikationsverlauf
eingereicht: 2.11.2010
akzeptiert: 3.3.2011
Publikationsdatum:
03. Mai 2011 (online)

Zusammenfassung
Das bessere Verständnis genetischer Nierenerkrankungen hat in den letzten zehn Jahren einen immensen Wissenszuwachs über grundlegende Funktionsmechanismen der Niere erbracht. Einblicke in pathophysiologische Grundprinzipien häufiger, teils vererbter, teils erworbener Nierenerkrankungen konnten dabei durch die Erforschung seltener genetischer Erkrankungen gewonnen werden und dienen nun als Ausgangspunkt zukünftiger Therapien. So sind für die sehr häufige autosomal dominante polyzystische Nierenerkrankung aufgrund der Ergebnisse aus der Grundlagenforschung bereits verschiedene multizentrische klinische Studien etabliert worden. Zunehmend zeigt sich außerdem der Einfluss genetischer Aspekte bei häufigen Nierenerkrankungen wie der diabetischen Nephropathie. Der vorliegende Artikel gibt einen Überblick über wesentliche aktuelle Entwicklungen auf dem Gebiet der genetischen Nierenerkrankungen.
Abstract
The improved understanding of genetic kidney diseases has given rise to a more detailed understanding of kidney function within the last decade. Insights into the pathophysiological principles of frequent kidney diseases – partly inherited, partly acquired – have been obtained by the investigation of rare genetic disorders and can now serve as a starting point for the development of novel therapeutic strategies. In this way various clinical multicenter trials, which are based on the observations made in basic science have been established for the very common autosomal dominant polycystic kidney disease. Furthermore, the influence of genetic aspects on frequent kidney diseases, e. g. diabetic nephropathy, is becoming more obvious. This article aims to give an overview over essential recent development in the field of genetic kidney diseases.
Schlüsselwörter
Genetik - vererbte Nierenerkrankungen - Podozyt - Nephrotisches Syndrom - Zilien - Zystennieren - M. Fabry
Keywords
genetics - inherited kidney diseases - podocyte - nephrotic syndrome - cilia - cystic kidney disease - M. Fabry
Literatur
- 1
Alamowitch S, Plaisier E, Favrole P. et al .
Cerebrovascular disease related to COL4A1
mutations in HANAC syndrome.
Neurology.
2009;
73
1873-1882
MissingFormLabel
- 2
Benzing T.
Signaling at the slit diaphragm.
J Am Soc Nephrol.
2004;
15
1382-1391
MissingFormLabel
- 3
Bostrom M A, Freedman B I, Langefeld C D. et al .
Association of
adiponectin gene polymorphisms with type 2 diabetes in an African
American population enriched for nephropathy.
Diabetes.
2009;
58
499-504
MissingFormLabel
- 4
Boyer O, Benoit G, Gribouval O. et al .
Mutational analysis of the PLCE1 gene in steroid
resistant nephrotic syndrome.
J Med Genet.
2010;
47
445-452
MissingFormLabel
- 5
Brown E J, Schlondorff J S, Becker D J. et al .
Mutations in the
formin gene INF2 cause focal segmental glomerulosclerosis.
Nat
Genet.
2010;
42
72-76
MissingFormLabel
- 6
Buscher A K, Kranz B, Buscher R. et al .
Immunosuppression and Renal Outcome in
Congenital and Pediatric Steroid-Resistant Nephrotic Syndrome.
Clin J Am Soc Nephrol.
2010;
5
2075-2084
MissingFormLabel
- 7
Chambers J C, Zhang W, Lord G M. et al .
Genetic loci influencing kidney function
and chronic kidney disease.
Nat Genet.
2010;
42
373-375
MissingFormLabel
- 8
Cochat P, Fargue S, Mestrallet G. et al .
Disease recurrence in paediatric renal transplantation.
Pediatr Nephrol.
2009;
24
2097-2108
MissingFormLabel
- 9
Danielsen H, Pedersen E B, Nielsen A H. et al .
Expansion of extracellular
volume in early polycystic kidney disease.
Acta Med Scand.
1986;
219
399-405
MissingFormLabel
- 10
Fischer E, Legue E, Doyen A. et
al .
Defective planar cell polarity in polycystic kidney
disease.
Nat Genet.
2006;
38
21-23
MissingFormLabel
- 11
Fliegauf M, Benzing T, Omran H.
When cilia go bad: cilia defects and ciliopathies.
Nat
Rev Mol Cell Biol.
2007;
8
880-893
MissingFormLabel
- 12
Freedman B I, Kopp J B, Langefeld C D. et al .
The Apolipoprotein L1 (APOL1) Gene
and Nondiabetic Nephropathy in African Americans.
J Am
Soc Nephrol.
2010;
21
1422-1426
MissingFormLabel
- 13
Friedman D J, Talbert M E, Bowden D W. et al .
Functional ENTPD1 polymorphisms
in African Americans with diabetes and end-stage renal disease.
Diabetes.
2009;
58
999-1006
MissingFormLabel
- 14
Gaspar P, Herrera J, Rodrigues D. et al .
Frequency of Fabry disease in male and female
haemodialysis patients in Spain.
BMC Med Genet.
2010;
11
19
MissingFormLabel
- 15
Genovese G, Friedman D J, Ross M D. et al .
Association of trypanolytic
ApoL1 variants with kidney disease in African Americans.
Science.
2010;
329
841-845
MissingFormLabel
- 16
Gerdes J M, Davis E E, Katsanis N.
The vertebrate primary cilium in development, homeostasis, and
disease.
Cell.
2009;
137
32-45
MissingFormLabel
- 17
Gross O, Kashtan C E.
Treatment of Alport
syndrome: beyond animal models.
Kidney Int.
2009;
76
599-603
MissingFormLabel
- 18
Hildebrandt F.
Genetic kidney diseases.
Lancet.
2010;
375
1287-1295
MissingFormLabel
- 19
Hinkes B, Vlangos C, Heeringa S. et al .
Specific podocin mutations correlate with
age of onset in steroid-resistant nephrotic syndrome.
J
Am Soc Nephrol.
2008;
19
365-371
MissingFormLabel
- 20
Hinkes B G, Mucha B, Vlangos C N. et al .
Nephrotic syndrome in the first year of life:
two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1,
and LAMB2).
Pediatrics.
2007;
119
e907-919
MissingFormLabel
- 21
Huber T B, Kwoh C, Wu H. et
al .
Bigenic mouse models of focal segmental glomerulosclerosis
involving pairwise interaction of CD2AP, Fyn, and synaptopodin.
J Clin Invest.
2006;
116
1337-1345
MissingFormLabel
- 22
Hudson B G, Tryggvason K, Sundaramoorthy M. et al .
Alport’s syndrome, Goodpasture’s
syndrome, and type IV collagen.
N Engl J Med.
2003;
348
2543-2556
MissingFormLabel
- 23
Kalluri R, Shield C F, Todd P. et al .
Isoform switching of type IV collagen is
developmentally arrested in X-linked Alport syndrome leading to
increased susceptibility of renal basement membranes to endoproteolysis.
J Clin Invest.
1997;
99
2470-2478
MissingFormLabel
- 24
Kao W H, Klag M J, Meoni L A. et al .
MYH9 is associated with
nondiabetic end-stage renal disease in African Americans.
Nat
Genet.
2008;
40
1185-1192
MissingFormLabel
- 25
Katayama K, Kawano M, Naito I. et al .
Irradiation prolongs survival of Alport mice.
J Am Soc Nephrol.
2008;
19
1692-1700
MissingFormLabel
- 26
Kestila M, Lenkkeri U, Mannikko M. et al .
Positionally cloned gene for a novel glomerular
protein-nephrin – is mutated in congenital nephrotic syndrome.
Mol Cell.
1998;
1
575-582
MissingFormLabel
- 27
Knebelmann B, Kurschat C, Thadhani R.
Enzyme therapy for Fabry’s disease: registered for
success?.
Lancet.
2009;
374
1950-1951
MissingFormLabel
- 28
Kopp J B, Smith M W, Nelson G W. et al .
MYH9 is a major-effect risk
gene for focal segmental glomerulosclerosis.
Nat Genet.
2008;
40
1175-1184
MissingFormLabel
- 29
Kottgen A, Glazer N L, Dehghan A. et al .
Multiple loci associated with indices of renal
function and chronic kidney disease.
Nat Genet.
2009;
41
1191-1198
MissingFormLabel
- 30
Kottgen A, Hwang S J, Larson M G. et al .
Uromodulin levels associate
with a common UMOD variant and risk for incident CKD.
J
Am Soc Nephrol.
2010;
21
337-344
MissingFormLabel
- 31
Kuusniemi A M, Qvist E, Sun Y. et
al .
Plasma exchange and retransplantation in recurrent
nephrosis of patients with congenital nephrotic syndrome of the Finnish
type (NPHS1).
Transplantation.
2007;
83
1316-1323
MissingFormLabel
- 32
LeBleu V, Sugimoto H, Mundel T M. et al .
Stem cell therapies benefit Alport syndrome.
J Am Soc Nephrol.
2009;
20
2359-2370
MissingFormLabel
- 33
Lowik M, Levtchenko E, Westra D. et al .
Bigenic heterozygosity and the development
of steroid-resistant focal segmental glomerulosclerosis.
Nephrol Dial
Transplant.
2008;
23
3146-3151
MissingFormLabel
- 34
Machuca E, Hummel A, Nevo F. et
al .
Clinical and epidemiological assessment of steroid-resistant
nephrotic syndrome associated with the NPHS2 R229Q variant.
Kidney
Int.
2009;
75
727-735
MissingFormLabel
- 35
Masyuk T V, Masyuk A I, Torres V E. et al .
Octreotide inhibits hepatic
cystogenesis in a rodent model of polycystic liver disease by reducing
cholangiocyte adenosine 3’,5’-cyclic monophosphate.
Gastroenterology.
2007;
132
1104-1116
MissingFormLabel
- 36
Mehta A, Beck M, Elliott P. et
al .
Enzyme replacement therapy with agalsidase alfa
in patients with Fabry’s disease: an analysis of registry
data.
Lancet.
2009;
374
1986-1996
MissingFormLabel
- 37
Nishio S, Tian X, Gallagher A R. et al .
Loss of oriented cell division does not
initiate cyst formation.
J Am Soc Nephrol.
2010;
21
295-302
MissingFormLabel
- 38
Patel V, Chowdhury R, Igarashi P.
Advances in the pathogenesis and treatment of polycystic kidney
disease.
Curr Opin Nephrol Hypertens.
2009;
18
99-106
MissingFormLabel
- 39
Pattaro C, Aulchenko Y S, Isaacs A. et al .
Genome-wide linkage analysis of serum creatinine
in three isolated European populations.
Kidney Int.
2009;
76
297-306
MissingFormLabel
- 40
Pazour G J.
Intraflagellar transport and cilia-dependent renal disease:
the ciliary hypothesis of polycystic kidney disease.
J
Am Soc Nephrol.
2004;
15
2528-2536
MissingFormLabel
- 41
Philippe A, Nevo F, Esquivel E L. et al .
Nephrin mutations can cause childhood-onset
steroid-resistant nephrotic syndrome.
J Am Soc Nephrol.
2008;
19
1871-1878
MissingFormLabel
- 42
Plaisier E, Gribouval O, Alamowitch S. et al .
COL4A1 mutations and hereditary angiopathy,
nephropathy, aneurysms, and muscle cramps.
N Engl J Med.
2007;
357
2687-2695
MissingFormLabel
- 43
Ravine D, Gibson R N, Walker R G. et al .
Evaluation of ultrasonographic
diagnostic criteria for autosomal dominant polycystic kidney disease
1.
Lancet.
1994;
343
824-827
MissingFormLabel
- 44
Reiser J, Polu K R, Moller C C. et al .
TRPC6 is a glomerular slit
diaphragm-associated channel required for normal renal function.
Nat Genet.
2005;
37
739-744
MissingFormLabel
- 45
Schermer B, Benzing T.
Lipid-protein interactions
along the slit diaphragm of podocytes.
J Am Soc Nephrol.
2009;
20
473-478
MissingFormLabel
- 46
Sekine T, Konno M, Sasaki S. et al .
Patients with Epstein-Fechtner syndromes owing
to MYH9 R702 mutations develop progressive proteinuric renal disease.
Kidney Int.
2010;
78
207-214
MissingFormLabel
- 47
Serra A L, Poster D, Kistler A D. et al .
Sirolimus and kidney growth in autosomal dominant
polycystic kidney disease.
N Engl J Med.
2010;
363
820-829
MissingFormLabel
- 48
Shillingford J M, Murcia N S, Larson C H. et al .
The mTOR pathway
is regulated by polycystin-1, and its inhibition reverses renal
cystogenesis in polycystic kidney disease.
Proc Natl Acad
Sci U S A.
2006;
103
5466-5471
MissingFormLabel
- 49
Shillingford J M, Piontek K B, Germino G G. et al .
Rapamycin ameliorates
PKD resulting from conditional inactivation of Pkd1.
J
Am Soc Nephrol.
2010;
21
489-497
MissingFormLabel
- 50
Spada M, Pagliardini S, Yasuda M. et al .
High incidence of later-onset fabry disease
revealed by newborn screening.
Am J Hum Genet.
2006;
79
31-40
MissingFormLabel
- 51
Srivastava T, Garola R E, Kestila M. et al .
Recurrence of proteinuria following renal
transplantation in congenital nephrotic syndrome of the Finnish
type.
Pediatr Nephrol.
2006;
21
711-718
MissingFormLabel
- 52
Sugimoto H, Mundel T M, Sund M. et al .
Bone-marrow-derived stem cells repair basement
membrane collagen defects and reverse genetic kidney disease.
Proc Natl Acad Sci U S A.
2006;
103
7321-7326
MissingFormLabel
- 53
Torres V E, Harris P C.
Autosomal dominant
polycystic kidney disease: the last 3 years.
Kidney Int.
2009;
76
149-168
MissingFormLabel
- 54
van Keimpema L, Nevens F, Vanslembrouck R. et al .
Lanreotide reduces the volume of polycystic
liver: a randomized, double-blind, placebo-controlled trial.
Gastroenterology.
2009;
137
1661-1668
e1661 – 1662
MissingFormLabel
- 55
Walz G, Budde K, Mannaa M. et
al .
Everolimus in patients with autosomal dominant
polycystic kidney disease.
N Engl J Med.
2010;
363
830-840
MissingFormLabel
- 56
Winn M P, Conlon P J, Lynn K L. et al .
A mutation in the TRPC6
cation channel causes familial focal segmental glomerulosclerosis.
Science.
2005;
308
1801-1804
MissingFormLabel
- 57
Yoder B K, Richards W G, Sweeney W E. et al .
Insertional mutagenesis
and molecular analysis of a new gene associated with polycystic
kidney disease.
Proc Assoc Am Physicians.
1995;
107
314-323
MissingFormLabel
- 58
Zenker M, Machuca E, Antignac C.
Genetics of nephrotic syndrome: new insights into molecules
acting at the glomerular filtration barrier.
J Mol Med.
2009;
87
849-857
MissingFormLabel
Dr. Max Christoph Liebau
Klinik und Poliklinik für allgemeine
Kinderheilkunde
und Nephrologisches Forschungslabor
der Klinik IV
für Innere Medizin, Nephrologie
und Allgemeine Innere Medizin
Uniklinik Köln
Kerpener Str. 62
50924 Köln
Telefon: 0221-478-4359
Fax: 0221-478-89041
eMail: max.liebau@uk-koeln.de