Semin Neurol 2011; 31(2): 144-157
DOI: 10.1055/s-0031-1277985
© Thieme Medical Publishers

Autoimmune Encephalopathy

Eoin P. Flanagan1 , Richard J. Caselli2
  • 1Department of Neurology, Mayo Clinic, Rochester, Minnesota
  • 2Department of Neurology, Mayo Clinic, Scottsdale, Arizona
Further Information

Publication History

Publication Date:
17 May 2011 (online)

ABSTRACT

Autoimmune encephalopathy represents a complex category of disease with diverse immunologic associations, clinical manifestations, and therapeutic outcomes. Three main subgroups include autoimmune encephalopathies without cancer but with neural nonspecific serologic evidence of autoimmunity (encompassing “Hashimoto's encephalopathy”) that is the main focus of this review, paraneoplastic encephalopathies, and central nervous system (CNS) vasculitis (primary or secondary). Diagnosis of autoimmune encephalopathy can be suspected based on the clinical course, serologic evidence of autoimmunity, severe but nonspecific slowing on electroencephalography, and evidence of intrathecal inflammation in the cerebrospinal fluid. Rarely, there will be evidence of meningeal enhancement or increased fluid attenuated inversion-recovery signal in symptomatic regions on magnetic resonance imaging, but diagnosis may require brain biopsy demonstration of perivascular lymphocytic infiltrates. Nonspecific autoimmune encephalopathies are generally much more therapeutically responsive than paraneoplastic and vasculitic encephalopathies, so that high-dose corticosteroids may produce dramatic improvement within as little as a few days, although exceptional patients can require months of therapy. Paraneoplastic syndromes typically require tumor removal and often prove fatal. CNS vasculitides may respond to steroid therapy, but often require a second agent such as cyclophosphamide.

REFERENCES

  • 1 Brain L, Jellinek E H, Ball K. Hashimoto's disease and encephalopathy.  Lancet. 1966;  2 (7462) 512-514
  • 2 Chong J Y, Rowland L P, Utiger R D. Hashimoto encephalopathy: syndrome or myth?.  Arch Neurol. 2003;  60 (2) 164-171
  • 3 Schott J M, Warren J D, Rossor M N. The uncertain nosology of Hashimoto encephalopathy.  Arch Neurol. 2003;  60 (12) 1812 author reply 1812
  • 4 Castillo P, Woodruff B, Caselli R et al.. Steroid-responsive encephalopathy associated with autoimmune thyroiditis.  Arch Neurol. 2006;  63 (2) 197-202
  • 5 Caselli R J, Boeve B F, Scheithauer B W, O'Duffy J D, Hunder G G. Nonvasculitic autoimmune inflammatory meningoencephalitis (NAIM): a reversible form of encephalopathy.  Neurology. 1999;  53 (7) 1579-1581
  • 6 Irani S R, Alexander S, Waters P et al.. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia.  Brain. 2010;  133 (9) 2734-2748
  • 7 Vincent A, Buckley C, Schott J M et al.. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis.  Brain. 2004;  127 (Pt 3) 701-712
  • 8 Lai M, Huijbers M G, Lancaster E et al.. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series.  Lancet Neurol. 2010;  9 (8) 776-785
  • 9 Flanagan E P, McKeon A, Lennon V A et al.. Autoimmune dementia: clinical course and predictors of immunotherapy response.  Mayo Clin Proc. 2010;  85 (10) 881-897
  • 10 Lyons M K, Caselli R J, Parisi J E. Nonvasculitic autoimmune inflammatory meningoencephalitis as a cause of potentially reversible dementia: report of 4 cases.  J Neurosurg. 2008;  108 (5) 1024-1027
  • 11 Johnson N, Henry C, Fessler A J, Dalmau J. Anti-NMDA receptor encephalitis causing prolonged nonconvulsive status epilepticus.  Neurology. 2010;  75 (16) 1480-1482
  • 12 Geschwind M D, Tan K M, Lennon V A et al.. Voltage-gated potassium channel autoimmunity mimicking Creutzfeldt-Jakob disease.  Arch Neurol. 2008;  65 (10) 1341-1346
  • 13 Duffey P, Yee S, Reid I N, Bridges L R. Hashimoto's encephalopathy: postmortem findings after fatal status epilepticus.  Neurology. 2003;  61 (8) 1124-1126
  • 14 Dalmau J, Gleichman A J, Hughes E G et al.. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies.  Lancet Neurol. 2008;  7 (12) 1091-1098
  • 15 Hoffman Snyder C, Mishark K J, Caviness J N, Drazkowski J F, Caselli R J. Nonvasculitic autoimmune inflammatory meningoencephalitis imitating Creutzfeldt-Jakob disease.  Arch Neurol. 2006;  63 (5) 766-768
  • 16 McKeon A, Marnane M, O'Connell M, Stack J P, Kelly P J, Lynch T. Potassium channel antibody associated encephalopathy presenting with a frontotemporal dementia like syndrome.  Arch Neurol. 2007;  64 (10) 1528-1530
  • 17 Eng J A, Frosch M P, Choi K, Rebeck G W, Greenberg S M. Clinical manifestations of cerebral amyloid angiopathy-related inflammation.  Ann Neurol. 2004;  55 (2) 250-256
  • 18 Vernino S, Geschwind M, Boeve B. Autoimmune encephalopathies.  Neurologist. 2007;  13 (3) 140-147
  • 19 Hussain N S, Rumbaugh J, Kerr D, Nath A, Hillis A E. Effects of prednisone and plasma exchange on cognitive impairment in Hashimoto encephalopathy.  Neurology. 2005;  64 (1) 165-166
  • 20 McKeon A, Lennon V A, Pittock S J. Immunotherapy-responsive dementias and encephalopathies.  Continuum Lifelong Learning Neurol. 2010;  16 (2) 80-101
  • 21 Lai M, Hughes E G, Peng X et al.. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location.  Ann Neurol. 2009;  65 (4) 424-434
  • 22 Lancaster E, Lai M, Peng X et al.. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen.  Lancet Neurol. 2010;  9 (1) 67-76
  • 23 Dalmau J, Tüzün E, Wu H Y et al.. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma.  Ann Neurol. 2007;  61 (1) 25-36
  • 24 Calabrese L H, Duna G F, Lie J T. Vasculitis in the central nervous system.  Arthritis Rheum. 1997;  40 (7) 1189-1201
  • 25 Salvarani C, Brown Jr R D, Calamia K T et al.. Primary central nervous system vasculitis: analysis of 101 patients.  Ann Neurol. 2007;  62 (5) 442-451
  • 26 Lie J T. Classification and histopathologic spectrum of central nervous system vasculitis.  Neurol Clin. 1997;  15 (4) 805-819
  • 27 Lie J T. Primary (granulomatous) angiitis of the central nervous system: a clinicopathologic analysis of 15 new cases and a review of the literature.  Hum Pathol. 1992;  23 (2) 164-171
  • 28 Caselli R J, Hunder G G, Whisnant J P. Neurologic disease in biopsy-proven giant cell (temporal) arteritis.  Neurology. 1988;  38 (3) 352-359
  • 29 Salvarani C, Giannini C, Miller D V, Hunder G. Giant cell arteritis: Involvement of intracranial arteries.  Arthritis Rheum. 2006;  55 (6) 985-989
  • 30 Kerr G S, Hallahan C W, Giordano J et al.. Takayasu arteritis.  Ann Intern Med. 1994;  120 (11) 919-929
  • 31 Hata A, Noda M, Moriwaki R, Numano F. Angiographic findings of Takayasu arteritis: new classification.  Int J Cardiol. 1996;  54 (Suppl) S155-S163
  • 32 Soliotis F C, Mavragani C P, Moutsopoulos H M. Central nervous system involvement in Sjogren's syndrome.  Ann Rheum Dis. 2004;  63 (6) 616-620
  • 33 Kidd D, Steuer A, Denman A M, Rudge P. Neurological complications in Behçet's syndrome.  Brain. 1999;  122 (Pt 11) 2183-2194
  • 34 Lucchinetti C F, Gavrilova R H, Metz I et al.. Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis.  Brain. 2008;  131 (Pt 7) 1759-1775
  • 35 Geurts J J, Bö L, Roosendaal S D et al.. Extensive hippocampal demyelination in multiple sclerosis.  J Neuropathol Exp Neurol. 2007;  66 (9) 819-827
  • 36 Bunyan R, Popescu B, Carter J et al.. Childhood onset multiple sclerosis with progressive dementia and pathological cortical demyelination.  Arch Neurol. 2011;  68 (4) 525-528
  • 37 Leavitt J A, Campbell R J. Cost-effectiveness in the diagnosis of sarcoidosis: the conjunctival biopsy.  Eye (Lond). 1998;  12 (Pt 6) 959-962
  • 38 Moravan M, Segal B M. Treatment of CNS sarcoidosis with infliximab and mycophenolate mofetil.  Neurology. 2009;  72 (4) 337-340
  • 39 Cools J, DeAngelo D J, Gotlib J et al.. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome.  N Engl J Med. 2003;  348 (13) 1201-1214
  • 40 Ogbogu P U, Bochner B S, Butterfield J H et al.. Hypereosinophilic syndrome: a multicenter, retrospective analysis of clinical characteristics and response to therapy.  J Allergy Clin Immunol. 2009;  124 (6) 1319-1325 e3
  • 41 Bartynski W S. Posterior reversible encephalopathy syndrome, part 1: fundamental imaging and clinical features.  AJNR Am J Neuroradiol. 2008;  29 (6) 1036-1042

Richard J CaselliM.D. 

Mayo Clinic, Department of Neurology

13400 East Shea Boulevard, Scottsdale, AZ 85259

Email: Caselli.Richard@Mayo.edu

    >