Geburtshilfe Frauenheilkd 2011; 71(12): 1056-1066
DOI: 10.1055/s-0031-1280437
Review
GebFra Science
Georg Thieme Verlag KG Stuttgart · New York

Breast Cancer Risk – Genes, Environment and Clinics

Mammakarzinomrisiko – Gene, Umwelt und Klinik
P. A. Fasching
1   Universitäts-Brustzentrum Franken, Frauenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-Nürnberg, Erlangen
,
A. B. Ekici
2   Institut für Humangenetik, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen
,
B. R. Adamietz
4   Institut für Diagnostische Radiologie, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen
,
D. L. Wachter
3   Institut für Pathologie, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen
,
A. Hein
1   Universitäts-Brustzentrum Franken, Frauenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-Nürnberg, Erlangen
,
C. M. Bayer
1   Universitäts-Brustzentrum Franken, Frauenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-Nürnberg, Erlangen
,
L. Häberle
1   Universitäts-Brustzentrum Franken, Frauenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-Nürnberg, Erlangen
,
C. R. Loehberg
1   Universitäts-Brustzentrum Franken, Frauenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-Nürnberg, Erlangen
,
S. M. Jud
1   Universitäts-Brustzentrum Franken, Frauenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-Nürnberg, Erlangen
,
K. Heusinger
1   Universitäts-Brustzentrum Franken, Frauenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-Nürnberg, Erlangen
,
M. Rübner
1   Universitäts-Brustzentrum Franken, Frauenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-Nürnberg, Erlangen
,
C. Rauh
1   Universitäts-Brustzentrum Franken, Frauenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-Nürnberg, Erlangen
,
M. R. Bani
1   Universitäts-Brustzentrum Franken, Frauenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-Nürnberg, Erlangen
,
M. P. Lux
1   Universitäts-Brustzentrum Franken, Frauenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-Nürnberg, Erlangen
,
R. Schulz-Wendtland
4   Institut für Diagnostische Radiologie, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen
,
A. Hartmann
3   Institut für Pathologie, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen
,
M. W. Beckmann
1   Universitäts-Brustzentrum Franken, Frauenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-Nürnberg, Erlangen
› Author Affiliations
Further Information

Publication History

received 02 November 2011
revised 21 November 2011

accepted 2 01 November 2011

Publication Date:
22 December 2011 (online)

Abstract

The information available about breast cancer risk factors has increased dramatically during the last 10 years. In particular, studies of low-penetrance genes and mammographic density have improved our understanding of breast cancer risk. In addition, initial steps have been taken in investigating interactions between genes and environmental factors. This review concerns with actual data on this topic. Several genome-wide association studies (GWASs) with a case–control design, as well as large-scale validation studies, have identified and validated more than a dozen single nucleotide polymorphisms (SNPs) associated with breast cancer risk. They are located not only in or close to genes known to be involved in cancer pathogenesis, but also in genes not previously associated with breast cancer pathogenesis, or may even not be related to any genes. SNPs have also been identified that alter the lifetime risk in BRCA mutation carriers. With regard to nongenetic risk factors, studies of postmenopausal hormone replacement therapy (HRT) have revealed important information on how to weigh up the risks and benefits of HRT. Mammographic density (MD) has become an accepted and important breast cancer risk factor. Lifestyle and nutritional considerations have become an integral part of most studies of breast cancer risk, and some improvements have been made in this field as well. More than 10 years after the publication of the first breast cancer prevention studies with tamoxifen, other substances such as raloxifene and aromatase inhibitors have been investigated and have also been shown to have preventive potential. Finally, mammographic screening systems have been implemented in most Western countries during the last decade. These may be developed further by including more individualized methods of predicting the patientʼs breast cancer risk.

Zusammenfassung

Das Wissen über Brustkrebsrisikofaktoren hat in den letzten 10 Jahren deutlich zugenommen. Insbesondere die Bedeutung von niedrigpenetranten Risikogenen konnte besser verstanden werden. Zusätzlich werden erste Schritte unternommen, um das Zusammenspiel zwischen Umweltfaktoren und genetischen Faktoren besser zu verstehen. Einige genomweite Assoziationsstudien von Fall-Kontroll-Studien und groß angelegte Validierungsstudien konnten mehr als ein Dutzend validierte Single Nucleotid Polymorphismen (SNPs) als genetische Risikofaktoren etablieren. Dabei handelt es sich um Veränderungen in Genen, von denen teilweise bekannt war, dass sie bei der Pathogenese des Mammakarzinoms eine Rolle spielen. Andere dieser Gene waren bislang noch nicht mit der Biologie des Mammakarzinoms in Verbindung gebracht worden. Auch konnten SNPs identifiziert werden, die das Lebenszeitrisiko von BRCA-Mutationsträgern modifizieren können. In Bezug auf nicht genetische Risikofaktoren hat das Wissen um die Hormonersatztherapie (HRT) in den letzten 10 Jahren deutlich zugenommen, sodass eine bessere Nutzen-Risiko-Bewertung vorgenommen werden konnte. Die mammografische Dichte hat sich als wichtiger und akzeptierter Risikofaktor etabliert. Lifestyle und Ernährung werden nach wie vor mit großem Interesse als Risikofaktoren für das Mammakarzinom untersucht. Einige Studien konnten auch auf diesem Gebiet das Wissen erweitern. Mehr als 10 Jahre nach der Publikation der ersten Chemopräventionsstudien gibt es nunmehr nicht nur zur Substanz Tamoxifen Ergebnisse. Auch zu Raloxifen und Aromatasehemmern gibt es Studien, die deren protektive Wirkung nachgewiesen haben. Schließlich wurde in den meisten westlichen Industrieländern das Mammografiescreening als Früherkennung etabliert und bereits jetzt werden Überlegungen unternommen, wie man durch die Integration von individualiserter Risikoprädiktion die Früherkennung verbessern könnte.

 
  • References

  • 1 Fasching PA, Fehm T, Janni W et al. Breast cancer therapy – a state of the art review. Geburtsh Frauenheilk 2010; 70: 875-886
  • 2 Liedtke C, Kiesel L. Basal/triple negative breast cancer. Geburtsh Frauenheilk 2009; 69: 309-315
  • 3 Liedtke C, Wolf MK, Kiesel L. New concepts for targeted systemic therapy in breast cancer. Geburtsh Frauenheilk 2010; 70: 625-633
  • 4 Ruschoff J, Nagelmeier I, Middel P et al. The role of Her-2/neu in the carcinogenesis of breast cancer – when and where?. Geburtsh Frauenheilk 2009; 69: 711-716
  • 5 Miki Y, Swensen J, Shattuck-Eidens D et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266: 66-71
  • 6 Wooster R, Bignell G, Lancaster J et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 1995; 378: 789-792
  • 7 Shattuck-Eidens D, Oliphant A, McClure M et al. BRCA1 sequence analysis in women at high risk for susceptibility mutations. Risk factor analysis and implications for genetic testing. JAMA 1997; 278: 1242-1250
  • 8 Couch FJ, Weber BL. Mutations and polymorphisms in the familial early-onset breast cancer (BRCA1) gene. Breast Cancer Information Core. Hum Mutat 1996; 8: 8-18
  • 9 Antoniou A, Pharoah PD, Narod S et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 2003; 72: 1117-1130
  • 10 Szabo CI, King MC. Population genetics of BRCA1 and BRCA2. Am J Hum Genet 1997; 60: 1013-1020
  • 11 Carlson CS, Eberle MA, Kruglyak L et al. Mapping complex disease loci in whole-genome association studies. Nature 2004; 429: 446-452
  • 12 Cargill M, Altshuler D, Ireland J et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 1999; 22: 231-238
  • 13 Thorisson GA, Smith AV, Krishnan L et al. The International HapMap Project web site. Genome Res 2005; 15: 1592-1593
  • 14 The International HapMap Project. The International HapMap Project. Nature 2003; 426: 789-796
  • 15 Sachidanandam R, Weissman D, Schmidt SC et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409: 928-933
  • 16 Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 1516-1517
  • 17 National Institutes of Health. Policy for sharing of data obtained in NIH supported or conducted genome-wide association studies (GWAS). Federal Regist 2007; 72: 49290-49297
  • 18 Easton DF, Pooley KA, Dunning AM et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007; 447: 1087-1093
  • 19 Ahmed S, Thomas G, Ghoussaini M et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 2009; 41: 585-590
  • 20 Stacey SN, Manolescu A, Sulem P et al. Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 2008; 40: 703-706
  • 21 Milne RL, Benitez J, Nevanlinna H et al. Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042. J Natl Cancer Inst 2009; 101: 1012-1018
  • 22 Milne RL, Goode EL, Garcia-Closas M et al. Confirmation of 5p12 as a susceptibility locus for progesterone-receptor-positive, lower grade breast cancer. Cancer Epidemiol Biomarkers Prev 2011; 20: 2222-2231
  • 23 Breast Cancer Association Consortium. Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. J Natl Cancer Inst 2006; 98: 1382-1396
  • 24 Cox A, Dunning AM, Garcia-Closas M et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 2007; 39: 352-358
  • 25 Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 2002; 360: 187-195
  • 26 Lambe M, Hsieh C, Trichopoulos D et al. Transient increase in the risk of breast cancer after giving birth. N Engl J Med 1994; 331: 5-9
  • 27 Manson JE, Hsia J, Johnson KC et al. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med 2003; 349: 523-534
  • 28 Chlebowski RT, Hendrix SL, Langer RD et al. Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Womenʼs Health Initiative Randomized Trial. JAMA 2003; 289: 3243-3253
  • 29 Million Women Study Collaborators. Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 2003; 362: 419-427
  • 30 Albring C, Baum E, Beckermann MJ et al. Hormone therapy in the peri and postmenopausal women – short version of the S3-guideline. Geburtsh Frauenheilk 2010; 70: R64-R76
  • 31 Ravdin PM, Cronin KA, Howlader N et al. The decrease in breast-cancer incidence in 2003 in the United States. N Engl J Med 2007; 356: 1670-1674
  • 32 Katalinic A, Rawal R. Decline in breast cancer incidence after decrease in utilisation of hormone replacement therapy. Breast Cancer Res Treat 2008; 107: 427-430
  • 33 Chlebowski RT, Anderson GL, Gass M et al. Estrogen plus progestin and breast cancer incidence and mortality in postmenopausal women. JAMA 2010; 304: 1684-1692
  • 34 Kenemans P, Kubista E, Foidart JM et al. Safety of tibolone in the treatment of vasomotor symptoms in breast cancer patients – design and baseline data ‘LIBERATE’ trial. Breast 2007; 16 (Suppl. 02) S182-S189
  • 35 Kenemans P, Bundred NJ, Foidart JM et al. Safety and efficacy of tibolone in breast-cancer patients with vasomotor symptoms: a double-blind, randomised, non-inferiority trial. Lancet Oncol 2009; 10: 135-146
  • 36 Untch M, Beckmann MW, Emons G et al. The LIBERATE study: hormone replacement therapy with tibolone increases the risk of recurrence and metastases in breast cancer patients. Geburtsh Frauenheilk 2009; 69: 199-201
  • 37 McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2006; 15: 1159-1169
  • 38 Heusinger K, Loehberg CR, Haeberle L et al. Mammographic density as a risk factor for breast cancer in a German case-control study. Eur J Cancer Prev 2011; 20: 1-8
  • 39 Boyd NF, Guo H, Martin LJ et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med 2007; 356: 227-236
  • 40 Wolfe JN, Saftlas AF, Salane M. Mammographic parenchymal patterns and quantitative evaluation of mammographic densities: a case-control study. AJR Am J Roentgenol 1987; 148: 1087-1092
  • 41 Wolfe JN. Breast patterns as an index of risk for developing breast cancer. AJR Am J Roentgenol 1976; 126: 1130-1137
  • 42 Boyd NF, Byng JW, Jong RA et al. Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst 1995; 87: 670-675
  • 43 Gao J, Warren R, Warren-Forward H et al. Reproducibility of visual assessment on mammographic density. Breast Cancer Res Treat 2008; 108: 121-127
  • 44 Boyd NF, Martin LJ, Yaffe M et al. Mammographic density. Breast Cancer Res 2009; 11 (Suppl. 03) S4
  • 45 Byng JW, Boyd NF, Fishell E et al. The quantitative analysis of mammographic densities. Phys Med Biol 1994; 39: 1629-1638
  • 46 Ursin G, Astrahan MA, Salane M et al. The detection of changes in mammographic densities. Cancer Epidemiol Biomarkers Prev 1998; 7: 43-47
  • 47 Vachon CM, Kuni CC, Anderson K et al. Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control 2000; 11: 653-662
  • 48 Butler LM, Gold EB, Greendale GA et al. Menstrual and reproductive factors in relation to mammographic density: the Study of Womenʼs Health Across the Nation (SWAN). Breast Cancer Res Treat 2008; 112: 165-174
  • 49 Loehberg CR, Heusinger K, Jud SM et al. Assessment of mammographic density before and after first full-term pregnancy. Eur J Cancer Prev 2010; 19: 405-412
  • 50 Boyd NF, Martin LJ, Bronskill M et al. Breast tissue composition and susceptibility to breast cancer. J Natl Cancer Inst 2010; 102: 1224-1237
  • 51 World Cancer Fund Hrsg. Krebsprävention durch Ernährung. Forschung, Daten, Begründungen, Empfehlungen. Potsdam-Rehbrücke: Deutsches Institut für Ernährungsforschung (DIfE); 2003: 1-28
  • 52 Bundesforschungsinstitut für Ernährung und Lebensmittel Hrsg. Nationale Verzehrsstudie II, Teil 1. Karlsruhe: Max Rübner Institut; 2008: 1-143
  • 53 Berrington de Gonzalez A, Sweetland S, Spencer E. A meta-analysis of obesity and the risk of pancreatic cancer. Br J Cancer 2003; 89: 519-523
  • 54 Benson VS, Pirie K, Green J et al. Lifestyle factors and primary glioma and meningioma tumours in the Million Women Study cohort. Br J Cancer 2008; 99: 185-190
  • 55 Vainio H, Kaaks R, Bianchini F. Weight control and physical activity in cancer prevention: international evaluation of the evidence. Eur J Cancer Prev 2002; 11 (Suppl. 02) S94-S100
  • 56 Bianchini F, Kaaks R, Vainio H. Weight control and physical activity in cancer prevention. Obes Rev 2002; 3: 5-8
  • 57 Harvie M, Howell A, Vierkant RA et al. Association of gain and loss of weight before and after menopause with risk of postmenopausal breast cancer in the Iowa womenʼs health study. Cancer Epidemiol Biomarkers Prev 2005; 14: 656-661
  • 58 Brennan SF, Cantwell MM, Cardwell CR et al. Dietary patterns and breast cancer risk: a systematic review and meta-analysis. Am J Clin Nutr 2010; 91: 1294-1302
  • 59 Cummings SR, Tice JA, Bauer S et al. Prevention of breast cancer in postmenopausal women: approaches to estimating and reducing risk. J Natl Cancer Inst 2009; 101: 384-398
  • 60 Michels KB, Mohllajee AP, Roset-Bahmanyar E et al. Diet and breast cancer: a review of the prospective observational studies. Cancer 2007; 109: 2712-2749
  • 61 Yin L, Grandi N, Raum E et al. Meta-analysis: serum vitamin D and breast cancer risk. Eur J Cancer 2010; 46: 2196-2205
  • 62 Van ʼt Veer P, van Leer EM, Rietdijk A et al. Combination of dietary factors in relation to breast-cancer occurrence. Int J Cancer 1991; 47: 649-653
  • 63 Landa MC, Frago N, Tres A. Diet and the risk of breast cancer in Spain. Eur J Cancer Prev 1994; 3: 313-320
  • 64 Zaridze D, Lifanova Y, Maximovitch D et al. Diet, alcohol consumption and reproductive factors in a case-control study of breast cancer in Moscow. Int J Cancer 1991; 48: 493-501
  • 65 Negri E, La Vecchia C, Franceschi S et al. Intake of selected micronutrients and the risk of breast cancer. Int J Cancer 1996; 65: 140-144
  • 66 Adzersen KH, Jess P, Freivogel KW et al. Raw and cooked vegetables, fruits, selected micronutrients, and breast cancer risk: a case-control study in Germany. Nutr Cancer 2003; 46: 131-137
  • 67 Boyapati SM, Shu XO, Jin F et al. Dietary calcium intake and breast cancer risk among Chinese women in Shanghai. Nutr Cancer 2003; 46: 38-43
  • 68 Levi F, Pasche C, Lucchini F et al. Dietary intake of selected micronutrients and breast-cancer risk. Int J Cancer 2001; 91: 260-263
  • 69 Katsouyanni K, Willett W, Trichopoulos D et al. Risk of breast cancer among Greek women in relation to nutrient intake. Cancer 1988; 61: 181-185
  • 70 Trock BJ, Hilakivi-Clarke L, Clarke R. Meta-analysis of soy intake and breast cancer risk. J Natl Cancer Inst 2006; 98: 459-471
  • 71 Wu AH, Yu MC, Tseng CC et al. Epidemiology of soy exposures and breast cancer risk. Br J Cancer 2008; 98: 9-14
  • 72 Milne RL, Gaudet MM, Spurdle AB et al. Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Res 2010; 12: R110
  • 73 Travis RC, Reeves GK, Green J et al. Gene-environment interactions in 7610 women with breast cancer: prospective evidence from the Million Women Study. Lancet 2010; 375: 2143-2151
  • 74 Campa D, Kaaks R, Le Marchand L et al. Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium. J Natl Cancer Inst 2011; 103: 1252-1263
  • 75 Prentice RL. Empirical evaluation of gene and environment interactions: methods and potential. J Natl Cancer Inst 2011; 103: 1209-1210
  • 76 Berry DA, Iversen jr. ES, Gudbjartsson DF et al. BRCAPRO validation, sensitivity of genetic testing of BRCA1/BRCA2, and prevalence of other breast cancer susceptibility genes. J Clin Oncol 2002; 20: 2701-2712
  • 77 Parmigiani G, Berry D, Aguilar O. Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet 1998; 62: 145-158
  • 78 Parmigiani G. BRCAPRO. http://astor.som.jhmi.edu/BayesMendel/brcapro.html Stand: 1.11.2011
  • 79 Antoniou AC, Cunningham AP, Peto J et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer 2008; 98: 1457-1466
  • 80 Antoniou AC, Pharoah PP, Smith P et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer 2004; 91: 1580-1590
  • 81 Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 2004; 23: 1111-1130
  • 82 Antoniou A. BOADICEA. http://www.srl.cam.ac.uk/genepi/boadicea/boadicea_home.html Stand: 1.11.2011
  • 83 National Institutes of Health. Breast cancer risk assessment tool. http://www.cancer.gov/bcrisktool/ Stand: 1.11.2011
  • 84 Gail MH, Benichou J. Validation studies on a model for breast cancer risk. J Natl Cancer Inst 1994; 86: 573-575
  • 85 Claus EB, Risch N, Thompson WD. The calculation of breast cancer risk for women with a first degree family history of ovarian cancer. Breast Cancer Res Treat 1993; 28: 115-120
  • 86 Tice JA, Cummings SR, Smith-Bindman R et al. Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model. Ann Intern Med 2008; 148: 337-347
  • 87 Milne RL, Antoniou AC. Genetic modifiers of cancer risk for BRCA1 and BRCA2 mutation carriers. Ann Oncol 2011; 22 (Suppl. 01) i11-i17
  • 88 Wacholder S, Hartge P, Prentice R et al. Performance of common genetic variants in breast-cancer risk models. N Engl J Med 2010; 362: 986-993
  • 89 Azzato EM, Tyrer J, Fasching PA et al. Association between a germline OCA2 polymorphism at chromosome 15q13.1 and estrogen receptor-negative breast cancer survival. J Natl Cancer Inst 2010; 102: 650-662
  • 90 Antoniou AC, Wang X, Fredericksen ZS et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet 2010; 42: 885-892
  • 91 Yang XR, Chang-Claude J, Goode EL et al. Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst 2011; 103: 250-263
  • 92 Broeks A, Schmidt MK, Sherman ME et al. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet 2011; 20: 3289-3303
  • 93 Stevens KN, Vachon CM, Lee AM et al. Common breast cancer susceptibility loci are associated with triple-negative breast cancer. Cancer Res 2011; 71: 6240-6249
  • 94 Kaufmann M, Rody A. Breast cancer: reduced mortality by early detection and adjuvant therapy. Geburtsh Frauenheilk 2009; 69: 218-232
  • 95 Katalinic A. Breast cancer: declining mortality despite its increasing incidence. Geburtsh Frauenheilk 2009; 69: 237-239
  • 96 Wunderlich P, Plodeck V, Kast K et al. Intensified screening program for women with hereditary predisposition to develop breast cancer – our study results and current knowledge in the literature. Geburtsh Frauenheilk 2009; 69: 623-630
  • 97 Kast K, Distler W, Schmutzler R. Current recommendations for the prevention and treatment of hereditary breast cancer. Geburtsh Frauenheilk 2010; 70: 634-639
  • 98 Pfandzelter R, Wulfing U, Boedeker B et al. Diagnostic image quality of mammograms in German outpatient medical care. Geburtsh Frauenheilk 2010; 70: 998-1005
  • 99 Lange J, Leidinger P, Oehler T et al. miRNA biomarkers from blood – a promising approach for minimally invasive diagnostic testing. Geburtsh Frauenheilk 2010; 70: 137-141
  • 100 Hauth EA, Wostmann A, Heindel W. Diagnostic imaging of invasive lobular breast carcinoma. Geburtsh Frauenheilk 2009; 69: 836-841
  • 101 Kojima Y, Tsunoda H. Mammography and ultrasound features of triple-negative breast cancer. Breast Cancer 2011; 18: 146-151
  • 102 Choi YJ, Seong MH, Choi SH et al. Ultrasound and clinicopathological characteristics of triple receptor-negative breast cancers. J Breast Cancer 2011; 14: 119-123
  • 103 Meijers-Heijboer H, van Geel B, van Putten WL et al. Breast cancer after prophylactic bilateral mastectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 2001; 345: 159-164
  • 104 Meijers-Heijboer H, Brekelmans CT, Menke-Pluymers M et al. Use of genetic testing and prophylactic mastectomy and oophorectomy in women with breast or ovarian cancer from families with a BRCA1 or BRCA2 mutation. J Clin Oncol 2003; 21: 1675-1681
  • 105 Hartmann LC, Sellers TA, Schaid DJ et al. Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers. J Natl Cancer Inst 2001; 93: 1633-1637
  • 106 Hartmann LC, Schaid DJ, Woods JE et al. Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med 1999; 340: 77-84
  • 107 Hughes KS, Papa MZ, Whitney T et al. Prophylactic mastectomy and inherited predisposition to breast carcinoma. Cancer 1999; 86: 2502-2516
  • 108 Fasching PA, von Minckwitz G, Fischer T et al. The impact of breast cancer awareness and socioeconomic status on willingness to receive breast cancer prevention drugs. Breast Cancer Res Treat 2007; 101: 95-104
  • 109 Loehberg CR, Jud SM, Haeberle L et al. Breast cancer risk assessment in a mammography screening program and participation in the IBIS-II chemoprevention trial. Breast Cancer Res Treat 2010; 121: 101-110
  • 110 Distler W, Canzler U, Duffy SR et al. Undesirable gynaecological and operative interventions during treatment of breast cancer with anastrozole and tamoxifen. Geburtsh Frauenheilk 2010; 70: 57-61
  • 111 Goss PE, Ingle JN, Ales-Martinez JE et al. Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 2011; 364: 2381-2391
  • 112 Cuzick J. IBIS II: a breast cancer prevention trial in postmenopausal women using the aromatase inhibitor anastrozole. Expert Rev Anticancer Ther 2008; 8: 1377-1385
  • 113 Antoniou AC, Sinilnikova OM, Simard J et al. RAD51 135G–>C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 2007; 81: 1186-1200
  • 114 Engel C, Versmold B, Wappenschmidt B et al. Association of the variants CASP8 D302H and CASP10 V410I with breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev 2010; 19: 2859-2868
  • 115 Antoniou AC, Spurdle AB, Sinilnikova OM et al. Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am J Hum Genet 2008; 82: 937-948
  • 116 Antoniou AC, Sinilnikova OM, McGuffog L et al. Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers. Hum Mol Genet 2009; 18: 4442-4456
  • 117 Antoniou AC, Kartsonaki C, Sinilnikova OM et al. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers. Hum Mol Genet 2011; 20: 3304-3321
  • 118 Spiegelman D, Colditz GA, Hunter D et al. Validation of the Gail et al. model for predicting individual breast cancer risk. J Natl Cancer Inst 1994; 86: 600-607
  • 119 Dupont WD, Page DL. Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med 1985; 312: 146-151
  • 120 Pike MC, Siiteri PK, Welsch CW et al. The Epidemiology of Breast Cancer as it relates to Menarche, Pregnancy, and Menopause. Cold Spring Harbor: Cold Spring Harbor Laboratory; 1981: 3-21
  • 121 Brinton LA, Schairer C, Hoover RN et al. Menstrual factors and risk of breast cancer. Cancer Invest 1988; 6: 245-254
  • 122 Kelsey JL, Gammon MD, John EM. Reproductive factors and breast cancer. Epidemiol Rev 1993; 15: 36-47
  • 123 Saftlas AF, Hoover RN, Brinton LA et al. Mammographic densities and risk of breast cancer. Cancer 1991; 67: 2833-2838
  • 124 Byrne C, Schairer C, Wolfe J et al. Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst 1995; 87: 1622-1629
  • 125 van Gils CH, Hendriks JH, Otten JD et al. Parity and mammographic breast density in relation to breast cancer risk: indication of interaction. Eur J Cancer Prev 2000; 9: 105-111
  • 126 Thomas DB, Carter RA, Bush jr. WH et al. Risk of subsequent breast cancer in relation to characteristics of screening mammograms from women less than 50 years of age. Cancer Epidemiol Biomarkers Prev 2002; 11: 565-571
  • 127 Torres-Mejia G, De Stavola B, Allen DS et al. Mammographic features and subsequent risk of breast cancer: a comparison of qualitative and quantitative evaluations in the Guernsey prospective studies. Cancer Epidemiol Biomarkers Prev 2005; 14: 1052-1059
  • 128 Nagata C, Matsubara T, Fujita H et al. Mammographic density and the risk of breast cancer in Japanese women. Br J Cancer 2005; 92: 2102-2106
  • 129 Maskarinec G, Pagano I, Lurie G et al. A longitudinal investigation of mammographic density: the multiethnic cohort. Cancer Epidemiol Biomarkers Prev 2006; 15: 732-739
  • 130 Kotsuma Y, Tamaki Y, Nishimura T et al. Quantitative assessment of mammographic density and breast cancer risk for Japanese women. Breast 2008; 17: 27-35
  • 131 Wong CS, Lim GH, Gao F et al. Mammographic density and its interaction with other breast cancer risk factors in an Asian population. Br J Cancer 2011; 104: 871-874