Der Nuklearmediziner 2011; 34(02): 99-107
DOI: 10.1055/s-0031-1280787
Hybridbildgebung und Strahlentherapie – aktuelle Entwicklungen
Georg Thieme Verlag KG Stuttgart · New York

Welche neuen PET-Tracer braucht die Strahlentherapie?

Novel Tracer for Radiation Treatment Planning
S. Schwarzenböck
1   Klinik für Nuklearmedizin, Universität, Rostock, Rostock
,
K. Herrmann
2   Klinik für Nuklearmedizin, Technische Universität, München
,
F. Gärtner
2   Klinik für Nuklearmedizin, Technische Universität, München
,
B. Kläsner
3   Institut für Radiologie und Nuklearmedizin, Klinikum Bogenhausen, München
,
M. Souvatzoglou
2   Klinik für Nuklearmedizin, Technische Universität, München
,
B. J. Krause
1   Klinik für Nuklearmedizin, Universität, Rostock, Rostock
› Author Affiliations
Further Information

Publication History

Publication Date:
03 August 2011 (online)

Zusammenfassung

Im Rahmen der Optimierung von Diagnostik und Therapie, u. a. der Bestrahlungstherapie, gewinnt in der Radioonkologie neben der [18F]FDG-Positronenemissiontomografie/Computertomografie (PET bzw. PET/CT) die PET/CT mit neuen Tracern zunehmend an Bedeutung.

Der Einsatz von [18F]Fluorothymidin ([18F]FLT) als Proliferationsmarker, [18F]Fluoromisonidazol ([18F]FMISO) und [18F]Fluoroazomycin-Arabinosid ([18F]FAZA) als Hypoxietracer, [18F]Fluoroethyltyrosin, ([18F]FET) und [11C]Methionin für die Hirntumorbildgebung, [68Ga]DOTATOC für die Somatostatinrezeptorbildgebung, [18F]FDOPA für die Dopaminsynthese und radioaktiv markierter Cholinderivate zur Phospholipidstoffwechsel-Bildgebung ist vielversprechend. Einige dieser neuen Tracer jenseits der FDG werden für radioonkologische Fragestellungen eingesetzt; so ist z. B. die Aminosäure-PET und -PET/CT hilfreich für eine optimierte Bestrahlungsplanung bei hirneigenen Tumoren, da FET und MET mit hoher Genauigkeit die Abgrenzung des Tumorgewebes vom Normalgewebe erlauben. Zukünftig wird die Etablierung und Validierung neuer Tracer für die Klinik, insbesondere auch für die Strahlentherapie, von Bedeutung sein. Tumorhypoxie bereitet im Rahmen der Bestrahlungsplanung therapeutische Schwierigkeiten. Die Hypoxiebildgebung könnte im Rahmen einer Intensitätsmodulierten Bestrahlungsplanung (IMRT) zu einer Therapieoptimierung beitragen.

Zudem haben Fortschritte in der Hybridbildgebungstechnologie der PET/MR hohes Potenzial in der bildgebenden Onkologie aufgrund der Synergie molekularer Information der PET mit dem höheren Weichteilkontrast, niedriger Strahlenbelastung und der Möglichkeit der morphologischen und funktionellen Bildgebung der MRT.

Abstract

PET and PET/CT with innovative tracers gain increasing importance in diagnosis and therapy management, and radiation treatment planning in radio-oncology besides the widely established FDG. The introduction of [18F]Fluorothymidine ([18F]FLT) as marker of proliferation, [18F]Fluoromisonidazole ([18F]FMISO) and [18F]Fluoroazomycin-Arabinoside ([18F]FAZA) as tracer of hypoxia, [18F]Fluoroethyltyrosine ([18F]FET) and [11C]Methionine for brain tumour imaging, [68Ga]DOTATOC for somatostatin receptor imaging, [18F]FDOPA for dopamine synthesis and radioactively labeled choline derivatives for imaging phospholipid metabolism have opened novel approaches to tumour imaging. Some of these tracers have already been implemented into radio-oncology: Amino acid PET and PET/CT have the potential to optimise radiation treatment planning of brain tumours through accurate delineation of tumour tissue from normal tissue, necrosis and edema. Hypoxia represents a major therapeutic problem in radiation therapy. Hypoxia imaging is very attractive as it may allow to increase the dose in hypoxic tumours potentially allowing for a better tumour control. Advances in hybrid imaging, i. e. the introduction of MR/PET, may also have an impact in radio-oncology through synergies related to the combination of molecular signals of PET and a high soft tissue contrast of MRI as well as functional MRI capabilities.

 
  • Literatur

  • 1 Barthel H, Perumal M, Latigo J et al. The uptake of 3′-deoxy-3′-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 2005; 32: 257-263
  • 2 Becherer A, Karanikas G, Szabo M et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]Methionine. Eur J Nucl Med Mol Imaging 2003; 30: 1561-1567
  • 3 Bott SR. Management of recurrent disease after radical prostatectomy. Prostate Cancer Prostatic Dis 2004; 7: 211-216
  • 4 Briganti A, Chun FK, Salonia A et al. Complications and other surgical outcomes associated with extended pelvic lymphadenectomy in men with localized prostate cancer. Eur Urol 2006; 50: 1006-1013
  • 5 Buck AK, Herrmann K, Shen C et al. Molecular imaging of proliferation in vivo: positron emission tomography with [18F]Fluorothymidine. Methods 2009; 48: 205-215
  • 6 Buck AK, Hetzel M, Schirrmeister H et al. Clinical relevance of imaging proliferative activity in lung nodules. Eur J Nucl Med Mol Imaging 2005; 32: 525-533
  • 7 Chen W, Silverman DH, Delaloye S et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 2006; 47: 904-911
  • 8 Chism DB, Hanlon AL, Horwitz EM et al. A comparison of the single and double factor high-risk models for risk assignment of prostate cancer treated with 3D conformal radiotherapy. Int J Radiat Oncol Biol Phys 2004; 59: 380-385
  • 9 Ciernik IF, Brown DW, Schmid D et al. 3D-segmentation of the 18F-choline PET signal for target volume definition in radiation therapy of the prostate. Technol Cancer Res Treat 2007; 6: 23-30
  • 10 Fletcher JW, Djulbegovic B, Soares HP et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 2008; 49: 480-508
  • 11 Francis DL, Visvikis D, Costa DC et al. Potential impact of [18F]3′-deoxy-3′-fluorothymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 2003; 30: 988-994
  • 12 Freedland SJ, Presti Jr. JC, Amling CL et al. Time trends in biochemical recurrence after radical prostatectomy: results of the SEARCH database. Urology 2003; 61: 736-741
  • 13 Grosu AL, Weber WA, Franz M et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2005; 63: 511-519
  • 14 Heiss P, Mayer S, Herz M et al. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 1999; 40: 1367-1373
  • 15 Herrmann K, Eckel F, Schmidt S et al. In vivo characterization of proliferation for discriminating cancer from pancreatic pseudotumors. J Nucl Med 2008; 49: 1437-1444
  • 16 Herrmann K, Ott K, Buck AK et al. Imaging gastric cancer with PET and the radiotracers 18F-FLT and 18F-FDG: a comparative analysis. J Nucl Med 2007; 48: 1945-1950
  • 17 Herrmann K, Wieder HA, Buck AK et al. Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin′s lymphoma. Clin Cancer Res 2007; 13: 3552-3558
  • 18 Hoegerle S, Altehoefer C, Ghanem N et al. 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 2001; 28: 64-71
  • 19 Kane CJ, Amling CL, Johnstone PA et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology 2003; 61: 607-611
  • 20 Kenny LM, Vigushin DM, Al-Nahhas A et al. Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]Fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 2005; 65: 10104-10112
  • 21 Krause BJ, Beck R, Souvatzoglou M et al. PET and PET/CT studies of tumor tissue oxygenation. Q J Nucl Med Mol Imaging 2006; 50: 28-43
  • 22 Krause BJ, Souvatzoglou M, Herrmann K et al. [11C]Choline as pharmacodynamic marker for therapy response assessment in a prostate cancer xenograft model. Eur J Nucl Med Mol Imaging 2010; 37: 1861-1868
  • 23 Krause BJ, Souvatzoglou M, Treiber U. Imaging of prostate cancer with PET/CT and radioactively labeled choline derivates. Urol Oncol 2011;
  • 24 Krause BJ, Souvatzoglou M, Tuncel M et al. The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 2008; 35: 18-23
  • 25 Lee NY, Mechalakos JG, Nehmeh S et al. Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: a feasibility study. Int J Radiat Oncol Biol Phys 2008; 70: 2-13
  • 26 Lin Z, Mechalakos J, Nehmeh S et al. The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18F-FMISO positron emission tomography. Int J Radiat Oncol Biol Phys 2008; 70: 1219-1228
  • 27 Nelson SJ. Imaging of brain tumors after therapy. Neuroimaging Clin N Am 1999; 9: 801-819
  • 28 Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 2005; 64: 479-489
  • 29 Ott K, Herrmann K, Schuster T et al. Molecular Imaging of Proliferation and Glucose Utilization: Utility for Monitoring Response and Prognosis after Neoadjuvant Therapy in Locally Advanced Gastric Cancer. Ann Surg Oncol. 2011
  • 30 Pasquier D, Ballereau C. Adjuvant and salvage radiotherapy after prostatectomy for prostate cancer: a literature review. Int J Radiat Oncol Biol Phys 2008; 72: 972-979
  • 31 Pauleit D, Floeth F, Hamacher K et al. O-(2-[18F]Fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687
  • 32 Popperl G, Goldbrunner R, Gildehaus FJ et al. O-(2-[18F]Fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 2005; 32: 1018-1025
  • 33 Popperl G, Gotz C, Rachinger W et al. Value of O-(2-[18F]Fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004; 31: 1464-1470
  • 34 Popperl G, Gotz C, Rachinger W et al. Serial O-(2-[(18)F]Fluoroethyl)-L: -tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging 2006; 33: 792-800
  • 35 Popperl G, Kreth FW, Herms J et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods?. J Nucl Med 2006; 47: 393-403
  • 36 Rachinger W, Goetz C, Popperl G et al. Positron emission tomography with O-(2-[18F]Fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 2005; 57: 505-511 discussion 505–511
  • 37 Rasey JS, Grierson JR, Wiens LW et al. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002; 43: 1210-1217
  • 38 Shields AF, Grierson JR, Dohmen BM et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998; 4: 1334-1336
  • 39 Smith RA, Cokkinides V, Eyre HJ. Cancer screening in the United States, 2007: a review of current guidelines, practices, and prospects. CA Cancer J Clin 2007; 57: 90-104
  • 40 Souvatzoglou MKB, Pürschel A, Thamm R et al. Influence of 11C-choline PET/CT on the treatment planning fpr savage radiation therapy in patients with biochemical recurrence of prostate cancer. Radiotherapy and Oncology in press 2011;
  • 41 Souvatzoglou M, Weirich G, Schwarzenboeck S et al. The sensitivity of [11C]choline PET/CT to localize prostate cancer depends on the tumor configuration. Clin Cancer Res 2011;
  • 42 Stephenson AJ, Scardino PT, Kattan MW et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol 2007; 25: 2035-2041
  • 43 Tuncel M, Souvatzoglou M, Herrmann K et al. [(11)C]Choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancer. Nucl Med Biol 2008; 35: 689-695
  • 44 Wagner M, Seitz U, Buck A et al. 3′-[18F]fluoro-3′-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-Cell lymphoma model and in the human disease. Cancer Res 2003; 63: 2681-2687
  • 45 Weber WA, Wester HJ, Grosu AL et al. O-(2-[18F]Fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000; 27: 542-549
  • 46 Weckesser M, Langen KJ, Rickert CH et al. O-(2-[18F]Fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 2005; 32: 422-429
  • 47 Zander T, Scheffler M, Nogova L et al. Early Prediction of Nonprogression in Advanced Non-Small-Cell Lung Cancer Treated With Erlotinib By Using [18F]Fluorodeoxyglucose and [18F]Fluorothymidine Positron Emission Tomography. J Clin Oncolo 2011; 29: 1701-1708