Subscribe to RSS
DOI: 10.1055/s-0031-1281733
© Georg Thieme Verlag KG Stuttgart · New York
Tiefe Hirnstimulation bei der Schizophrenie
Deep Brain Stimulation in SchizophreniaPublication History
Publication Date:
02 November 2011 (online)

Zusammenfassung
Die tiefe Hirnstimulation (THS) hat die Grenzen der Behandlungsmöglichkeiten einiger, vermeintlich therapieresistenter, neuropsychiatrischer Erkrankungen erfolgreich erweitert. Vor diesem Hintergrund werden immer mehr psychische Störungen im Stadium der Therapieresistenz als mögliche Indikationen der THS erwogen. Mittlerweile ist auch die Schizophrenie in den Fokus des Interesses gelangt. Diese, wie alle anderen potenziellen psychiatrischen Indikationen, bedürfen der kritischen Prüfung, ob der aktuelle Wissensstand in Hinblick auf die propagierten Wirkmechanismen der THS und die angenommene Pathophysiologie der Erkrankung einen Einsatz des Verfahrens rechtfertigen. Die vorliegende Arbeit betrachtet synoptisch die aktuellen Ansätze, die einen THS-Einsatz begründen könnten, und diskutiert die Übertragbarkeit bisheriger THS-Anwendungen, Studienergebnisse zur dopaminergen Transmission und zu neuronalen Oszillationen sowie tierexperimentelle Daten. In der Zusammenschau ist die aktuelle Datenlage durchaus zukunftsweisend für einige Symptome der Schizophrenie, rechtfertigt zum gegenwärtigen Zeitpunkt jedoch womöglich noch nicht den klinischen Einsatz der THS in der Behandlung. Vordringliche Aufgabe ist der Schluss bis dato bestehender Wissenslücken, um indikationsbegründende Hypothesen mit möglichst geringem Spekulationscharakter generieren zu können.
Abstract
Deep brain stimulation (DBS) has successfully advanced our treatment options for putative therapy-resistant neuropsychiatric diseases. Building on this strong foundation, more and more mental disorders in the stadium of therapy-resistance are considered as possible indications for DBS. Especially, schizophrenia with its associated severe and difficult to treat symptoms is gaining attention. This attention demands critical questions regarding the assumed mechanisms of DBS and its possible influence on the supposed pathophysiology of schizophrenia. Here, we synoptically compare current approaches and theories of DBS and discuss the feasibility of DBS in schizophrenia as well as the transferability from other psychiatric disorders successfully treated with DBS. For this we consider recent advances in animal models of schizophrenic symptoms, results regarding the influence of DBS on dopaminergic transmission as well as data concerning neural oscillation and synchronisation. In conclusion, the use of DBS for some symptoms of schizophrenia seems to be a promising approach, but the lack of a comprehensive theory of the mechanisms of DBS as well as its impact on schizophrenia might hinder the use of DBS for schizophrenia at this point in time.
Schlüsselwörter
Tiefe Hirnstimulation - Schizophrenie - Translationale Medizin - Neuronale Oszillationen
Keywords
deep brain stimulation - schizophrenia - translational medicine - neural oscillations
Literatur
- 1
Benabid A L, Pollak P, Louveau A et al.
Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus
for bilateral Parkinson disease.
Appl Neurophysiol.
1987;
50 (1 – 6)
344-346
MissingFormLabel
- 2
Deuschl G, Schade-Brittinger C, Krack P et al.
A randomized trial of deep-brain stimulation for Parkinson’s disease.
N Engl J Med.
2006;
355 (9)
896-908
MissingFormLabel
- 3
Kupsch A, Benecke R, Muller J et al.
Pallidal deep-brain stimulation in primary generalized or segmental dystonia.
N Engl J Med.
2006;
355 (19)
1978-1990
MissingFormLabel
- 4
Schuurman P R, Bosch D A, Bossuyt P M et al.
A comparison of continuous thalamic stimulation and thalamotomy for suppression of
severe tremor.
N Engl J Med.
2000;
342 (7)
461-468
MissingFormLabel
- 5
Deuschl G, Schade-Brittinger C, Krack P et al.
A randomized trial of deep-brain stimulation for Parkinson’s disease.
The New England journal of medicine.
2006;
355 (9)
896-908
MissingFormLabel
- 6
Skuban T, Flohrer, Klosterkoetter J et al.
Psychiatrische Nebenwirkungen der tiefen Hirnstimulation bei M. Parkinson.
submitted
MissingFormLabel
- 7
Nuttin B, Cosyns P, Demeulemeester H et al.
Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive
disorder.
Lancet.
1999;
354 (9189)
1526
MissingFormLabel
- 8
Vandewalle V, Linden van der C, Groenewegen H J et al.
Stereotactic treatment of Gilles de la Tourette syndrome by high frequency stimulation
of thalamus.
Lancet.
1999;
353 (9154)
724
MissingFormLabel
- 9
Kuhn J, Gründler T OJ, Lenartz D et al.
Deep brain stimulation for psychiatric disorders.
Dtsch Arztebl Int.
2010;
107 (7)
105-113
MissingFormLabel
- 10
Kuhn J, Gründler T OJ, Bauer R et al.
Observations on cognitive control during successful deep brain stimulation of the
nucleus accumbens in severe alcohol dependence.
submitted
MissingFormLabel
- 11
Kuhn J, Lenartz D, Huff W et al.
Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens:
valuable therapeutic implications?.
J Neurol Neurosurg Psychiatry.
2007;
78 (10)
1152-1153
MissingFormLabel
- 12
Laxton A W, Tang-Wai D F, McAndrews M P et al.
A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease.
Ann Neurol.
2010;
68 (4)
521-534
MissingFormLabel
- 13
Huys D, Möller M, Kim E et al.
Die historischen Grundlagen der tiefen Hirnstimulation bei psychiatrischen Erkrankungen.
Nervenarzt.
2011 Aug 25 [Epub ahead of print]
MissingFormLabel
- 14
Trottenberg T, Volkmann J, Deuschl G et al.
Treatment of severe tardive dystonia with pallidal deep brain stimulation.
Neurology.
2005;
64 (2)
344-346
MissingFormLabel
- 15
Damier P, Thobois S, Witjas T et al.
Bilateral deep brain stimulation of the globus pallidus to treat tardive dyskinesia.
Archives of general psychiatry.
2007;
64 (2)
170-176
MissingFormLabel
- 16
Cipriani A, Boso M, Barbui C.
Clozapine combined with different antipsychotic drugs for treatment resistant schizophrenia.
Cochrane database of systematic reviews.
2009;
3
CD006324
MissingFormLabel
- 17
Kirkpatrick B, Fenton W S, Carpenter W T et al.
The NIMH-MATRICS consensus statement on negative symptoms.
Schizophrenia bulletin.
2006;
32 (2)
214-219
MissingFormLabel
- 18
Os van J, Kapur Jr S.
Schizophrenia.
Lancet.
2009;
374 (9690)
635-645
MissingFormLabel
- 19
Wittchen H U, Essau C A, Zerssen von D et al.
Lifetime and six-month prevalence of mental disorders in the Munich Follow-Up Study.
European archives of psychiatry and clinical neuroscience.
1992;
241 (4)
247-258
MissingFormLabel
- 20
Perala J, Suvisaari J, Saarni S I et al.
Lifetime prevalence of psychotic and bipolar I disorders in a general population.
Archives of general psychiatry.
2007;
64 (1)
19-28
MissingFormLabel
- 21
Skantze K.
Subjective quality of life and standard of living: a 10-year follow-up of out-patients
with schizophrenia.
Acta psychiatrica Scandinavica.
1998;
98 (5)
390-399
MissingFormLabel
- 22
Pinikahana J, Happell B, Hope J et al.
Quality of life in schizophrenia: a review of the literature from 1995 to 2000.
International journal of mental health nursing.
2002;
11 (2)
103-111
MissingFormLabel
- 23 Castle D J, Morgan V. Epidemiology. In: Mueser K T, Jeste D V, eds Clinical handbook of schizophrenia. New York: The Guilford Press; 2008: 14-24
MissingFormLabel
- 24
Andreasen N C, Carpenter Jr W T, Kane J M et al.
Remission in schizophrenia: proposed criteria and rationale for consensus.
The American journal of psychiatry.
2005;
162 (3)
441-449
MissingFormLabel
- 25
Lambert M, Karow A, Leucht S et al.
Remission in schizophrenia: validity, frequency, predictors, and patients’ perspective
5 years later.
Dialogues in clinical neuroscience.
2010;
12 (3)
393-407
MissingFormLabel
- 26
Krack P, Batir A, Van Blercom N et al.
Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced
Parkinson’s disease.
The New England journal of medicine.
2003;
349 (20)
1925-1934
MissingFormLabel
- 27
Oh M Y, Abosch A, Kim S H et al.
Long-term hardware-related complications of deep brain stimulation.
Neurosurgery.
2002;
50 (6)
1268-1274
; discussion 1274 – 1276
MissingFormLabel
- 28
Müller S, Christen M.
Deep Brain Stimulation in Parkinsonian Patients – Ethical Evaluation of Cognitive,
Affective, and Behavioral Sequelae.
AJOB Neuroscience.
2011;
2 (1)
3-13
MissingFormLabel
- 29
McIntyre C C, Savasta M, Kerkerian-Le Goff L et al.
Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition,
or both.
Clin Neurophysiol.
2004;
115 (6)
1239-1248
MissingFormLabel
- 30
Dostrovsky J O, Levy R, Wu J P et al.
Microstimulation-induced inhibition of neuronal firing in human globus pallidus.
J Neurophysiol.
2000;
84 (1)
570-574
MissingFormLabel
- 31
Beurrier C, Bioulac B, Audin J et al.
High-frequency stimulation produces a transient blockade of voltage-gated currents
in subthalamic neurons.
J Neurophysiol.
2001;
85 (4)
1351-1356
MissingFormLabel
- 32
Leiphart J W, Valone3 rd F H.
Stereotactic lesions for the treatment of psychiatric disorders.
J Neurosurg.
2010;
113 (6)
1204-1211
MissingFormLabel
- 33
Ridding M C, Rothwell J C.
Is there a future for therapeutic use of transcranial magnetic stimulation?.
Nat Rev Neurosci.
2007;
8 (7)
559-567
MissingFormLabel
- 34
Pascual-Leone A, Bartres-Faz D, Keenan J P.
Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction
of ‘virtual lesions’.
Philos Trans R Soc Lond B Biol Sci.
1999;
354 (1387)
1229-1238
MissingFormLabel
- 35
Jandl M.
The use of repetitive transcranial magnetic stimulation (rTMS) in auditory verbal
hallucinations (AVH).
Fortschr Neurol Psychiatr.
2010;
78 (11)
632-643
MissingFormLabel
- 36
Aleman A, Sommer I E, Kahn R S.
Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of
resistant auditory hallucinations in schizophrenia: a meta-analysis.
The Journal of clinical psychiatry.
2007;
68 (3)
416-421
MissingFormLabel
- 37
Slotema C W, Blom J D, Hoek H W et al.
Should we expand the toolbox of psychiatric treatment methods to include Repetitive
Transcranial Magnetic Stimulation (rTMS)? A meta-analysis of the efficacy of rTMS
in psychiatric disorders.
The Journal of clinical psychiatry.
2010;
71 (7)
873-884
MissingFormLabel
- 38
Slotema C W, Blom J D, Weijer A D et al.
Can low-frequency repetitive transcranial magnetic stimulation really relieve medication-resistant
auditory verbal hallucinations? Negative results from a large randomized controlled
trial.
Biological psychiatry.
2011;
69 (5)
450-456
MissingFormLabel
- 39
Payne N A, Prudic de J.
Electroconvulsive therapy: Part I. A perspective on the evolution and current practice
of ECT.
Journal of psychiatric practice.
2009;
15 (5)
346-368
MissingFormLabel
- 40
Kato N.
Neurophysiological mechanisms of electroconvulsive therapy for depression.
Neuroscience research.
2009;
64 (1)
3-11
MissingFormLabel
- 41
Daniels J.
Catatonia: clinical aspects and neurobiological correlates.
The Journal of neuropsychiatry and clinical neurosciences.
2009;
21 (4)
371-380
MissingFormLabel
- 42
Sanacora G, Mason G F, Rothman D L et al.
Increased cortical GABA concentrations in depressed patients receiving ECT.
The American journal of psychiatry.
2003;
160 (3)
577-579
MissingFormLabel
- 43
Northoff G.
What catatonia can tell us about „top-down modulation“: a neuropsychiatric hypothesis.
The Behavioral and brain sciences.
2002;
25 (5)
555-577
; discussion 578 – 604
MissingFormLabel
- 44
Mikell C B, McKhann G M, Segal S et al.
The hippocampus and nucleus accumbens as potential therapeutic targets for neurosurgical
intervention in schizophrenia.
Stereotact Funct Neurosurg.
2009;
87 (4)
256-265
MissingFormLabel
- 45
Kapur S.
Psychosis as a state of aberrant salience: a framework linking biology, phenomenology,
and pharmacology in schizophrenia.
Am J Psychiatry.
2003;
160 (1)
13-23
MissingFormLabel
- 46
Kapur S, Mizrahi R, Li M.
From dopamine to salience to psychosis – linking biology, pharmacology and phenomenology
of psychosis.
Schizophrenia research.
2005;
79 (1)
59-68
MissingFormLabel
- 47
Goto Y, Otani S, Grace A A.
The Yin and Yang of dopamine release: a new perspective.
Neuropharmacology.
2007;
53 (5)
583-587
MissingFormLabel
- 48
Kapur S, Mamo D.
Half a century of antipsychotics and still a central role for dopamine D 2 receptors.
Prog Neuropsychopharmacol Biol Psychiatry.
2003;
27 (7)
1081-1090
MissingFormLabel
- 49
Juckel G, Schlagenhauf F, Koslowski M et al.
Dysfunction of ventral striatal reward prediction in schizophrenic patients treated
with typical, not atypical, neuroleptics.
Psychopharmacology.
2006;
187 (2)
222-228
MissingFormLabel
- 50
Rosenfeld A J, Lieberman J A, Jarskog L F.
Oxytocin, Dopamine, and the Amygdala: A Neurofunctional Model of Social Cognitive
Deficits in Schizophrenia.
Schizophr Bull.
2011;
37 (5)
1077-1087
MissingFormLabel
- 51
Harvey P D, Koren D, Reichenberg A et al.
Negative symptoms and cognitive deficits: what is the nature of their relationship?.
Schizophr Bull.
2006;
32 (2)
250-258
MissingFormLabel
- 52
Ventura J, Hellemann G S, Thames A D et al.
Symptoms as mediators of the relationship between neurocognition and functional outcome
in schizophrenia: a meta-analysis.
Schizophr Res.
2009;
113 (2 – 3)
189-199
MissingFormLabel
- 53
Juckel G, Schlagenhauf F, Koslowski M et al.
Dysfunction of ventral striatal reward prediction in schizophrenia.
Neuroimage.
2006;
29 (2)
409-416
MissingFormLabel
- 54
Niv Y, Daw N D, Joel D et al.
Tonic dopamine: opportunity costs and the control of response vigor.
Psychopharmacology.
2007;
191 (3)
507-520
MissingFormLabel
- 55
Schlaepfer T E, Cohen M X, Frick C et al.
Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major
depression.
Neuropsychopharmacology.
2008;
33 (2)
368-377
MissingFormLabel
- 56
Hamamura T, Harada T.
Unique pharmacological profile of aripiprazole as the phasic component buster.
Psychopharmacology.
2007;
191 (3)
741-743
MissingFormLabel
- 57
Mazza M, Squillacioti M R, Pecora R D et al.
Effect of aripiprazole on self-reported anhedonia in bipolar depressed patients.
Psychiatry Res.
2009;
165 (1 – 2)
193-196
MissingFormLabel
- 58
Leucht S, Corves C, Arbter D et al.
Second-generation versus first-generation antipsychotic drugs for schizophrenia: a
meta-analysis.
Lancet.
2009;
373 (9657)
31-41
MissingFormLabel
- 59
Sandyk R.
Pineal and habenula calcification in schizophrenia.
Int J Neurosci.
1992;
67 (1 – 4)
19-30
MissingFormLabel
- 60
Corfas G, Roy K, Buxbaum J D.
Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia.
Nat Neurosci.
2004;
7 (6)
575-580
MissingFormLabel
- 61
Williams N M, Preece A, Spurlock G et al.
Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia.
Mol Psychiatry.
2003;
8 (5)
485-487
MissingFormLabel
- 62
Yang J Z, Si T M, Ruan Y et al.
Association study of neuregulin 1 gene with schizophrenia.
Mol Psychiatry.
2003;
8 (7)
706-9
MissingFormLabel
- 63
Steiner H, Blum M, Kitai S T et al.
Differential expression of ErbB3 and ErbB4 neuregulin receptors in dopamine neurons
and forebrain areas of the adult rat.
Exp Neurol.
1999;
159 (2)
494-503
MissingFormLabel
- 64
Lecourtier L, Kelly P H.
Bilateral lesions of the habenula induce attentional disturbances in rats.
Neuropsychopharmacology.
2005;
30 (3)
484-496
MissingFormLabel
- 65
Lecourtier L, Neijt H C, Kelly P H.
Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia.
Eur J Neurosci.
2004;
19 (9)
2551-2560
MissingFormLabel
- 66
Heldt S A, Ressler K J.
Lesions of the habenula produce stress- and dopamine-dependent alterations in prepulse
inhibition and locomotion.
Brain Res.
2006;
1073 – 1074
229-239
MissingFormLabel
- 67
Shepard P D, Holcomb H H, Gold J M.
Schizophrenia in translation: the presence of absence: habenular regulation of dopamine
neurons and the encoding of negative outcomes.
Schizophr Bull.
2006;
32 (3)
417-421
MissingFormLabel
- 68
Paul G, Reum T, Meissner W et al.
High frequency stimulation of the subthalamic nucleus influences striatal dopaminergic
metabolism in the naive rat.
Neuroreport.
2000;
11 (3)
441-444
MissingFormLabel
- 69
Meissner W, Harnack D, Reese R et al.
High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release
and metabolism in rats.
J Neurochem.
2003;
85 (3)
601-609
MissingFormLabel
- 70
Meissner W, Harnack D, Paul G et al.
Deep brain stimulation of subthalamic neurons increases striatal dopamine metabolism
and induces contralateral circling in freely moving 6-hydroxydopamine-lesioned rats.
Neurosci Lett.
2002;
328 (2)
105-108
MissingFormLabel
- 71
Meissner W, Reum T, Paul G et al.
Striatal dopaminergic metabolism is increased by deep brain stimulation of the subthalamic
nucleus in 6-hydroxydopamine lesioned rats.
Neurosci Lett.
2001;
303 (3)
165-168
MissingFormLabel
- 72
Winter C, Lemke C, Sohr R et al.
High frequency stimulation of the subthalamic nucleus modulates neurotransmission
in limbic brain regions of the rat.
Exp Brain Res.
2008;
185 (3)
497-507
MissingFormLabel
- 73
Benazzouz A, Piallat B, Pollak P et al.
Responses of substantia nigra pars reticulata and globus pallidus complex to high
frequency stimulation of the subthalamic nucleus in rats: electrophysiological data.
Neurosci Lett.
1995;
189 (2)
77-80
MissingFormLabel
- 74
Benazzouz A, Gao D M, Ni Z G et al.
Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities
of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus
in the rat.
Neuroscience.
2000;
99 (2)
289-295
MissingFormLabel
- 75
Benazzouz A, Gao D, Ni Z et al.
High frequency stimulation of the STN influences the activity of dopamine neurons
in the rat.
Neuroreport.
2000;
11 (7)
1593-1596
MissingFormLabel
- 76
Robledo P, Feger J.
Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata
and the pallidal complex: electrophysiological data.
Brain Res.
1990;
518 (1 – 2)
47-54
MissingFormLabel
- 77
Bruet N, Windels F, Carcenac C et al.
Neurochemical mechanisms induced by high frequency stimulation of the subthalamic
nucleus: increase of extracellular striatal glutamate and GABA in normal and hemiparkinsonian
rats.
J Neuropathol Exp Neurol.
2003;
62 (12)
1228-1240
MissingFormLabel
- 78
Buzsaki G, Draguhn A.
Neuronal oscillations in cortical networks.
Science.
2004;
304 (5679)
1926-1929
MissingFormLabel
- 79
Uhlhaas P J, Roux F, Singer W et al.
The development of neural synchrony reflects late maturation and restructuring of
functional networks in humans.
Proc Natl Acad Sci U S A.
2009;
106 (24)
9866-9871
MissingFormLabel
- 80
Stein von A, Sarnthein J.
Different frequencies for different scales of cortical integration: from local gamma
to long range alpha/theta synchronization.
Int J Psychophysiol.
2000;
38 (3)
301-313
MissingFormLabel
- 81
Uhlhaas P J, Singer W.
Abnormal neural oscillations and synchrony in schizophrenia.
Nat Rev Neurosci.
2010;
11 (2)
100-113
MissingFormLabel
- 82
Boutros N.
Lack of blinding in gating studies.
Schizophr Res.
2008;
103 (1 – 3)
336
; author reply 337
MissingFormLabel
- 83
Spencer K M, Nestor P G, Perlmutter R et al.
Neural synchrony indexes disordered perception and cognition in schizophrenia.
Proc Natl Acad Sci U S A.
2004;
101 (49)
17 288-17 293
MissingFormLabel
- 84
Uhlhaas P J, Haenschel C, Nikolic D et al.
The role of oscillations and synchrony in cortical networks and their putative relevance
for the pathophysiology of schizophrenia.
Schizophr Bull.
2008;
34 (5)
927-943
MissingFormLabel
- 85
Uhlhaas P J, Linden D E, Singer W et al.
Dysfunctional long-range coordination of neural activity during Gestalt perception
in schizophrenia.
J Neurosci.
2006;
26 (31)
8168-8175
MissingFormLabel
- 86
Haenschel C, Linden D E, Bittner R A et al.
Alpha phase locking predicts residual working memory performance in schizophrenia.
Biol Psychiatry.
2010;
68 (7)
595-598
MissingFormLabel
- 87
Rolls E T, Loh M, Deco G et al.
Computational models of schizophrenia and dopamine modulation in the prefrontal cortex.
Nat Rev Neurosci.
2008;
9 (9)
696-709
MissingFormLabel
- 88
Teubner M D, Nixon J B, Rasser P E et al.
Source localisation in a real human head.
Brain Topogr.
2005;
17 (4)
197-205
MissingFormLabel
- 89
Timmermann L, Gross J, Butz M et al.
Pathological oscillatory coupling within the human motor system in different tremor
syndromes as revealed by magnetoencephalography.
Neurol Clin Neurophysiol.
2004;
26
MissingFormLabel
- 90
Timmermann L, Gross J, Dirks M et al.
The cerebral oscillatory network of parkinsonian resting tremor.
Brain.
2003;
126 (Pt 1)
199-212
MissingFormLabel
- 91
Kuhn A A, Kupsch A, Schneider G H et al.
Reduction in subthalamic 8 – 35 Hz oscillatory activity correlates with clinical improvement
in Parkinson’s disease.
Eur J Neurosci.
2006;
23 (7)
1956-1960
MissingFormLabel
- 92
Kuhn A A, Williams D, Kupsch A et al.
Event-related beta desynchronization in human subthalamic nucleus correlates with
motor performance.
Brain.
2004;
127 (Pt 4)
735-746
MissingFormLabel
- 93
Meissner W, Leblois A, Hansel D et al.
Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal
oscillations.
Brain.
2005;
128 (Pt 10)
2372-2382
MissingFormLabel
- 94
Gallinat J, Mulert C, Bajbouj M et al.
Frontal and temporal dysfunction of auditory stimulus processing in schizophrenia.
Neuroimage.
2002;
17 (1)
110-127
MissingFormLabel
- 95
Javitt D C.
When doors of perception close: bottom-up models of disrupted cognition in schizophrenia.
Annu Rev Clin Psychol.
2009;
5
249-275
MissingFormLabel
- 96
Adcock R A, Dale C, Fisher M et al.
When top-down meets bottom-up: auditory training enhances verbal memory in schizophrenia.
Schizophr Bull.
2009;
35 (6)
1132-1141
MissingFormLabel
- 97
Arends M, Winterer G.
Tiefe Hirnstimulation bei Schizophrenie – Ein neues Forschungsprojekt.
Nervenarzt.
2008;
Suppl 4
470
MissingFormLabel
- 98
Gross A, Joutsiniemi S L, Rimon R et al.
Clozapine-induced QEEG changes correlate with clinical response in schizophrenic patients:
a prospective, longitudinal study.
Pharmacopsychiatry.
2004;
37 (3)
119-122
MissingFormLabel
- 99 Andreasen N C. Scale for the Assessment of Negative Symptoms (SANS). Iowa City: University of Iowa Press; 1983
MissingFormLabel
- 100
Gschwandtner U, Zimmermann R, Pflueger M O et al.
Negative symptoms in neuroleptic-naive patients with first-episode psychosis correlate
with QEEG parameters.
Schizophr Res.
2009;
115 (2 – 3)
231-236
MissingFormLabel
- 101
Singer W.
Neuronal synchrony: a versatile code for the definition of relations?.
Neuron.
1999;
24 (1)
49-65, 111 – 125
MissingFormLabel
- 102
Mundt A, Klein J, Joel D et al.
High-frequency stimulation of the nucleus accumbens core and shell reduces quinpirole-induced
compulsive checking in rats.
Eur J Neurosci.
2009;
29 (12)
2401-2412
MissingFormLabel
- 103
Klavir O, Flash S, Winter C et al.
High frequency stimulation and pharmacological inactivation of the subthalamic nucleus
reduces ‘compulsive’ lever-pressing in rats.
Exp Neurol.
2009;
215 (1)
101-109
MissingFormLabel
- 104
Klavir O, Winter C, Joel D.
High but not low frequency stimulation of both the globus pallidus and the entopeduncular
nucleus reduces ‘compulsive’ lever-pressing in rats.
Behav Brain Res.
2011;
216 (1)
84-93
MissingFormLabel
- 105
Djodari-Irani A, Klein J, Banzhaf J et al.
HFS and pharmacological inactivation of the globus pallidus and nucleus entopeduncularis
differentially affect quinpirole-induced compulsive checking in rats.
European Neuropsychopharmacology.
2010;
20
S281-S282
MissingFormLabel
- 106
Winter C, Flash S, Klavir O et al.
The role of the subthalamic nucleus in ‘compulsive’ behavior in rats.
Eur J Neurosci.
2008;
27 (8)
1902-1911
MissingFormLabel
- 107
Hamani C, Nobrega J N.
Deep brain stimulation in clinical trials and animal models of depression.
Eur J Neurosci.
2010;
32 (7)
1109-1117
MissingFormLabel
- 108
Hamani C, Diwan M, Macedo C E et al.
Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in
rats.
Biol Psychiatry.
2010;
67 (2)
117-124
MissingFormLabel
- 109
Vassoler F M, Schmidt H D, Gerard M E et al.
Deep brain stimulation of the nucleus accumbens shell attenuates cocaine priming-induced
reinstatement of drug seeking in rats.
J Neurosci.
2008;
28 (35)
8735-8739
MissingFormLabel
- 110
Rouaud T, Lardeux S, Panayotis N et al.
Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation.
Proc Natl Acad Sci U S A.
2010;
107 (3)
1196-1200
MissingFormLabel
- 111
Winter C, Harnack D, Kupsch A.
Deep brain stimulation for neurological and psychiatric diseases: animal experiments
on effect and mechanisms.
Nervenarzt.
2010;
81 (6)
711-718
MissingFormLabel
- 112
Feldon J, Weiner I.
Editorial: Special issue on modeling schizophrenia.
Behav Brain Res.
2009;
204 (2)
255-257
MissingFormLabel
- 113
Andreasen N C.
The American concept of schizophrenia.
Schizophr Bull.
1989;
15 (4)
519-531
MissingFormLabel
- 114
Klosterkotter J.
The revised definitions of schizophrenic disorders in ICD-10 and DSM-IV.
Fortschr Neurol Psychiatr.
1998;
66 (3)
133-143
MissingFormLabel
- 115
Kirkpatrick B, Fenton W S, Carpenter Jr W T et al.
The NIMH-MATRICS consensus statement on negative symptoms.
Schizophr Bull.
2006;
32 (2)
214-219
MissingFormLabel
- 116
Carter C S, Barch D M, Buchanan R W et al.
Identifying cognitive mechanisms targeted for treatment development in schizophrenia:
an overview of the first meeting of the Cognitive Neuroscience Treatment Research
to Improve Cognition in Schizophrenia Initiative.
Biol Psychiatry.
2008;
64 (1)
4-10
MissingFormLabel
- 117
Nuechterlein K H, Green M F, Kern R S et al.
The MATRICS Consensus Cognitive Battery, part 1: test selection, reliability, and
validity.
Am J Psychiatry.
2008;
165 (2)
203-213
MissingFormLabel
1 Die Autoren J. Kuhn und M. Bodatsch haben in gleicher Weise zum Manuskript beigetragen.
Prof. Jens Kuhn
Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum der Universität
Köln
Kerpener Str. 62
50937 Köln
Email: jens.kuhn@uk-koeln.de