Horm Metab Res 2011; 43(12): 884-889
DOI: 10.1055/s-0031-1284381
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Use of a Mouse Model of Pancreatic Neuroendocrine Tumors to Find Pericyte Biomarkers of Resistance to Anti-angiogenic Therapy

M. Franco
1   Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
,
M. Pàez-Ribes
2   Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
,
E. Cortez
1   Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
,
O. Casanovas
2   Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
,
K. Pietras
1   Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
› Author Affiliations
Further Information

Publication History

received 17 January 2011

accepted 28 June 2011

Publication Date:
29 September 2011 (online)

Abstract

The successful introduction of rationally targeted agents into standard cancer care is a testimony of the vast knowledge base in tumor biology. However, in order to provide individually tailored therapy to patients and to identify small subsets of patients with a high likelihood to benefit from treatment, the identification of biomarkers for response or resistance to a particular therapeutic regimen is imperative. Herein, by the use of a genetically engineered mouse model of pancreatic neuroendocrine tumors, we have assessed the utility of pericyte characteristics in terms of differential marker expression to serve as surrogate markers for response or evasive resistance to anti-angiogenic therapy. We found that tumors refractory to therapy following long-term treatment with a vascular endothelial growth factor receptor-2 blocking antibody contained blood vessels with a prolific investment of pericytes expressing α-smooth muscle actin. Further analysis by simultaneous immunostaining for different pericyte markers led to the conclusion that the increased abundance of this particular subtype of blood vessels most likely occurred by co-option of vessels from the surrounding exocrine pancreas. Our findings may form the basis for retrospective analysis of pancreatic neuroendocrine tumors from patients having undergone treatment with anti-angiogenic agents in order to validate the occurrence of pericytes expressing α-smooth muscle actin as a biomarker for tumors refractory to therapy.

 
  • References

  • 1 Fazio N, Cinieri S, Lorizzo K, Squadroni M, Orlando L, Spada F, Maiello E, Bodei L, Paganelli G, Delle Fave G, de Braud F. Biological targeted therapies in patients with advanced enteropancreatic neuroendocrine carcinomas. Cancer Treat Rev 2010; 36 (Suppl. 03) S87-S94
  • 2 Kerbel RS. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol Ther 2003; 2: S134-S139
  • 3 de Jonge MJ, Verweij J. Multiple targeted tyrosine kinase inhibition in the clinic: all for one or one for all?. Eur J Cancer 2006; 42: 1351-1356
  • 4 Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcberg JR. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359: 1757-1765
  • 5 Kerbel RS. Tumor angiogenesis. N Engl J Med 2008; 358: 2039-2049
  • 6 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-674
  • 7 Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999; 284: 808-812
  • 8 Roberts WG, Whalen PM, Soderstrom E, Moraski G, Lyssikatos JP, Wang HF, Cooper B, Baker DA, Savage D, Dalvie D, Atherton JA, Ralston S, Szewc R, Kath JC, Lin J, Soderstrom C, Tkalcevic G, Cohen BD, Pollack V, Barth W, Hungerford W, Ung E. Antiangiogenic and antitumor activity of a selective PDGFR tyrosine kinase inhibitor, CP-673,451. Cancer Res 2005; 65: 957-966
  • 9 Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 2006; 444: 1032-1037
  • 10 Cunha SI, Pardali E, Thorikay M, Anderberg C, Hawinkels L, Goumans MJ, Seehra J, Heldin CH, Ten Dijke P, Pietras K. Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 2010; 207: 85-100
  • 11 Hanahan D. Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 1985; 315: 115-122
  • 12 Pietras K, Hanahan D. A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 2005; 23: 939-952
  • 13 Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009; 15: 220-231
  • 14 Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C, Valle J, Metrakos P, Smith D, Vinik A, Chen JS, Horsch D, Hammel P, Wiedenmann B, Van Cutsem E, Patyna S, Lu DR, Blanckmeister C, Chao R, Ruszniewski P. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 2011; 364: 501-513
  • 15 Gaengel K, Genove G, Armulik A, Betsholtz C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 2009; 29: 630-638
  • 16 Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 2002; 160: 985-1000
  • 17 Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 2003; 111: 1287-1295
  • 18 Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, Menger MD, Ullrich A, Vajkoczy P. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. Faseb J 2004; 18: 338-340
  • 19 Lu C, Thaker PH, Lin YG, Spannuth W, Landen CN, Merritt WM, Jennings NB, Langley RR, Gershenson DM, Yancopoulos GD, Ellis LM, Jaffe RB, Coleman RL, Sood AK. Impact of vessel maturation on antiangiogenic therapy in ovarian cancer. Am J Obstet Gynecol 2008; 198 477 e471-e479 discussion 477 e479–e410
  • 20 Pietras K, Ostman A. Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 2010; 316: 1324-1331
  • 21 Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008; 8: 592-603
  • 22 Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005; 8: 299-309
  • 23 Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G. PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 2005; 7: 870-879
  • 24 Trotter J, Karram K, Nishiyama A. NG2 cells: Properties, progeny and origin. Brain Res Rev 2010; 63: 72-82
  • 25 Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 2006; 5: 1640-1646
  • 26 Sennino B, Falcon BL, McCauley D, Le T, McCauley T, Kurz JC, Haskell A, Epstein DM, McDonald DM. Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102. Cancer Res 2007; 67: 7358-7367
  • 27 Helfrich I, Scheffrahn I, Bartling S, Weis J, von Felbert V, Middleton M, Kato M, Ergun S, Schadendorf D. Resistance to antiangiogenic therapy is directed by vascular phenotype, vessel stabilization, and maturation in malignant melanoma. J Exp Med 2010; 207: 491-503
  • 28 Hasumi Y, Klosowska-Wardega A, Furuhashi M, Ostman A, Heldin CH, Hellberg C. Identification of a subset of pericytes that respond to combination therapy targeting PDGF and VEGF signaling. Int J Cancer 2007; 121: 2606-2614
  • 29 Jann H, Wertenbruch T, Pape U, Ozcelik C, Denecke T, Mehl S, Wiedenmann B, Pavel M. A matter of the heart: myocardial metastases in neuroendocrine tumors. Horm Metab Res 2010; 42: 967-976