References and Notes
<A NAME="RW18711ST-1A">1a</A>
Daugulis O.
Do H.-Q.
Shabashov D.
Acc. Chem. Res.
2009,
42:
1074
<A NAME="RW18711ST-1B">1b</A>
Yu J.-Q.
Giri R.
Chen X.
Org. Biomol.
Chem.
2006,
4:
4041
<A NAME="RW18711ST-1C">1c</A>
Alberico D.
Scott ME.
Lautens M.
Chem.
Rev.
2007,
107:
174
<A NAME="RW18711ST-1D">1d</A>
Chen X.
Engle K.-M.
Wang D.-H.
Yu J.-Q.
Angew. Chem. Int. Ed.
2009,
48:
5094
<A NAME="RW18711ST-1E">1e</A>
Li C.-J.
Acc.
Chem. Res.
2009,
42:
335
<A NAME="RW18711ST-1F">1f</A>
Kakiuchi F.
Kochi T.
Synthesis
2008,
3013
<A NAME="RW18711ST-1G">1g</A>
Seregin IV.
Gevorgyan V.
Chem Soc.
Rev.
2007,
36:
1173
<A NAME="RW18711ST-2A">2a</A>
Join B.
Yamamoto T.
Itami K.
Angew. Chem. Int. Ed.
2009,
121:
3698
<A NAME="RW18711ST-2B">2b</A>
Zaitsev VG.
Shabashov D.
Daugulis O.
J. Am. Chem. Soc.
2005,
127:
13154
<A NAME="RW18711ST-2C">2c</A>
Beck EM.
Grimster NP.
Hatley R.
Gaunt MJ.
J.
Am. Chem. Soc.
2006,
128:
2528
<A NAME="RW18711ST-2D">2d</A>
Campeau L.-C.
Staurt DR.
Leclerc J.-P.
Bertrand-Laperle M.
Villemure E.
Sun H.-Y.
Lasserre S.
Guimond N.
Lecavallier M.
Fagoun K.
J. Am. Chem. Soc.
2009,
131:
3291
<A NAME="RW18711ST-2E">2e</A>
Chen X.
Goodhue CE.
Yu J.-Q.
J.
Am. Chem. Soc.
2006,
128:
12634
<A NAME="RW18711ST-2F">2f</A>
Scarborough CC.
McDonald RI.
Hartmann C.
Sazama GT.
Bergant A.
Stahl SS.
J.
Org. Chem.
2009,
65:
914
<A NAME="RW18711ST-3A">3a</A>
Colby DA.
Bergman RG.
Ellman JA.
Chem.
Rev.
2010,
110:
624
<A NAME="RW18711ST-3B">3b</A>
Lyons TW.
Sanford MS.
Chem.
Rev.
2010,
110:
1147
<A NAME="RW18711ST-3C">3c</A>
Ackermann L.
Vicente R.
Kapdi AR.
Angew.
Chem. Int. Ed.
2009,
48:
9792
<A NAME="RW18711ST-3D">3d</A>
Xiao B.
Fu Y.
Xu J.
Gong TJ.
Dai JJ.
Yi J.
Liu L.
J.
Am. Chem. Soc.
2010,
132:
468
<A NAME="RW18711ST-3E">3e</A>
Zhao XD.
Yeung CS.
Dong VM.
J. Am. Chem. Soc.
2010,
132:
5837
<A NAME="RW18711ST-3F">3f</A>
Li BJ.
Yang SD.
Shi ZJ.
Synlett
2008,
949
<A NAME="RW18711ST-3G">3g</A>
Cai GX.
Fu Y.
Li YZ.
Wang XB.
Shi ZJ.
J.
Am. Chem. Soc.
2007,
129:
7666
<A NAME="RW18711ST-3H">3h</A>
Lu Y.
Wang DH.
Engle KM.
Yu JQ.
J. Am. Chem. Soc.
2010,
132:
5916
<A NAME="RW18711ST-3I">3i</A>
Li JJ.
Mei TS.
Yu JQ.
Angew.
Chem. Int. Ed.
2008,
47:
6452
<A NAME="RW18711ST-3J">3j</A>
Haffemayer B.
Gulias M.
Gaunt MJ.
Chem.
Sci.
2011,
2:
312
<A NAME="RW18711ST-3K">3k</A>
Yeung CS.
Zhao XD.
Borduas N.
Dong VM.
Chem.
Sci.
2010,
1:
331
<A NAME="RW18711ST-3L">3l</A>
Chiong HA.
Pham QN.
Daugulis O.
J. Am. Chem. Soc.
2007,
129:
9879
<A NAME="RW18711ST-3M">3m</A>
Engle KM.
Wang DH.
Yu JQ.
J. Am. Chem. Soc.
2010,
132:
14137
<A NAME="RW18711ST-3N">3n</A>
Mousseau JJ.
Vallée F.
Lorion MM.
Charette AB.
J.
Am. Chem. Soc.
2010,
132:
14412
<A NAME="RW18711ST-3O">3o</A>
Ng KH.
Chan ASC.
Yu WY.
J. Am. Chem. Soc.
2010,
132:
12862
<A NAME="RW18711ST-4A">4a</A>
Shi BS.
Zhang YH.
Lam JK.
Wang DH.
Yu
JQ.
J. Am. Chem.
Soc.
2010,
132:
460
<A NAME="RW18711ST-4B">4b</A>
Chu JH.
Tsai SL.
Wu MJ.
Synthesis
2009,
3757
<A NAME="RW18711ST-4C">4c</A>
Nishikata T.
Abela AR.
Huang SL.
Lipshutz BH.
J. Am. Chem. Soc.
2010,
132:
4978
<A NAME="RW18711ST-4D">4d</A>
Wang DH.
Wasa M.
Giri R.
Yu JQ.
J. Am. Chem. Soc.
2008,
130:
7190
<A NAME="RW18711ST-4E">4e</A>
Wen J.
Zhang J.
Chen SY.
Li J.
Yu XQ.
Angew.
Chem. Int. Ed.
2008,
47:
8897
<A NAME="RW18711ST-4F">4f</A>
Nishikata T.
Abela AR.
Lipshutz BH.
Angew. Chem. Int. Ed.
2010,
49:
781
<A NAME="RW18711ST-4G">4g</A>
Vogler T.
Studer A.
Org. Lett.
2008,
10:
129
<A NAME="RW18711ST-4H">4h</A>
Zhao JL.
Zhang YH.
Chen K.
J. Org. Chem.
2008,
73:
7428
<A NAME="RW18711ST-5">5</A>
Bagley MC.
Glover C.
Merritt EA.
Synlett
2007,
2459
<A NAME="RW18711ST-6">6</A>
Campeau LC.
Rousseaux S.
Fagnou K.
J.
Am. Chem. Soc.
2005,
127:
18020
<A NAME="RW18711ST-7">7</A>
Cho SH.
Hwang SJ.
Chang S.
J.
Am. Chem. Soc.
2008,
130:
9254
<A NAME="RW18711ST-8">8</A>
Ackermann L.
Fenner S.
Chem. Commun.
2011,
47:
430
<A NAME="RW18711ST-9">9</A>
Duric S.
Tzschucke CC.
Org. Lett.
2011,
13:
2310
<A NAME="RW18711ST-10A">10a</A>
Seiple IB.
Su S.
Rodriguez RA.
Gianatassio R.
Fujiwara Y.
Sobel AL.
Baran PS.
J. Am. Chem. Soc.
2010,
132:
13194
<A NAME="RW18711ST-10B">10b</A>
Fujiwara Y.
Domingo V.
Seiple IB.
Gianatassio R.
Bel MD.
Baran PS.
J. Am. Chem. Soc.
2011,
133:
3292
<A NAME="RW18711ST-11">11</A>
Deng GJ.
Ueda K.
Yanagisawa S.
Itami K.
Li CJ.
Chem.
Eur. J.
2009,
15:
333
<A NAME="RW18711ST-12A">12a</A>
Sun CL.
Li H.
Yu DG.
Yu M.
Zhou X.
Lu XY.
Huang K.
Zheng SF.
Li BJ.
Shi ZJ.
Nat.
Chem.
2010,
2:
1044
<A NAME="RW18711ST-12B">12b</A>
Shirakawa E.
Itoh K.
Higashino T.
Hayashi T.
J. Am. Chem. Soc.
2010,
132:
15537
<A NAME="RW18711ST-12C">12c</A>
Liu W.
Cao H.
Zhang H.
Zhang H.
Chung KH.
He C.
Wang HB.
Kwong FY.
Lei AW.
J.
Am. Chem. Soc.
2010,
132:
16737
<A NAME="RW18711ST-13">13</A>
General Procedure
for this Reaction
A 50 mL vial was charged with a
magnetic stir bar, pyridine N-oxide (1a, 1.5 mmol), phenylboronic acid (2a, 1.0 mmol), AgNO3 (0.2 mmol),
K2S2O8 (3.0 mmol), followed by CH2Cl2 and
deionized H2O (1:1, v/v, 30 mL in total). After stirring
at r.t. for 18 h, the reaction mixture was filtered through Celite
(washed with MeOH and CH2Cl2), extracted with
CH2Cl2 (3 × 10 mL). The combined
organic phase was dried over Na2SO4, then
evaporated under reduced pressure, and the isolated yield was obtained
by flash chromatography column on silica gel (gradient eluent of
MeOH in CH2Cl2:
1-5%,
v/v).
<A NAME="RW18711ST-14">14</A>
The metal sources used here [AgNO3,
Cu(OAc)2, CuCl2, FeCl3] were
all purchased from Aladdin Company in Shanghai. AR grade of AgNO3 (>99.8%),
AR grade of Cu(OAc)2 (anhyd, >99.0%),
AR grade of CuCl2 (anhyd, >98.0%),
AR grade of FeCl3 (anhyd, >97.5%).
2-Phenylpyridine
N
-Oxide (3aa)
6
¹H
NMR (400 MHz, CDCl3, 293 K): δ = 7.26-7.33
(m, 1 H), 7.41-7.45 (m, 1 H), 7.47-7.53 (m, 4
H), 7.80-7.83 (m, 2 H), 8.48 (d, J = 6.4
Hz, 1 H). ¹³C NMR (100 MHz, CDCl3,
293 K): δ = 149.4, 140.6, 132.6, 129.7, 129.3,
128.3, 127.5, 126.0, 124.6. Mp 144-146 ˚C (CH2Cl2).
2-(2-Methoxyphenyl)-6-methylpyridine
N
-Oxide (3bb)
¹H
NMR (400 MHz, CDCl3, 293 K): δ = 7.40-7.45
(t, J = 8.4 Hz,
1 H), 7.35-7.37 (d, J = 7.6
Hz, 1 H), 7.16-7.25 (m, 3 H), 6.99-7.06 (m, 2
H), 3.80 (s, 3 H), 2.57 (s, 3 H). ¹³C
NMR (100 MHz, CDCl3, 293 K): δ = 157.3,
149.5, 147.9, 130.7, 125.9, 125.2, 124.1, 122.9, 120.5, 111.2, 55.8,
18.4. ESI-MS: m/z = 216.0 [M + 1]+.
ESI-HRMS: m/z [M + H]+ calcd for
C13H14NO2
+:
216.1025; found: 216.1021.
2-(2-Methylphenyl)pyridine
N
-Oxide (3bc)
6
¹H NMR (400
MHz, CDCl3, 293 K): δ = 8.37 (d, J = 4.8 Hz, 1
H), 7.36-7.40 (m, 1 H), 7.24-7.32 (m, 6 H), 2.25
(s, 3 H). ¹³C NMR (100 MHz, CDCl3,
293 K): δ = 150.8, 140.1, 137.8, 132.9, 130.1,
129.6, 129.3, 128.0, 125.9, 125.4, 125.0, 19.5. Mp 107-109 ˚C
(CH2Cl2).
2-(4-Methoxyphenyl)pyridine
N
-Oxide (3ad)
6
¹H NMR (400
MHz, CDCl3, 293 K): δ = 8.35 (d, J = 6.4 Hz, 1
H), 7.80 (d, J = 8.8
Hz, 2 H), 7.43 (d, J = 7.6
Hz, 1 H), 7.32 (t, J = 7.6
Hz, 1 H), 7.21 (t, J = 6.4
Hz, 1 H), 7.02 (d, J = 8.8 Hz,
2 H), 3.87 (s, 3 H). ¹³C NMR (100 MHz,
CDCl3, 293 K): δ = 160.7, 149.2, 140.6,
130.9, 127.1, 126.7, 124.6, 123.9, 113.8, 55.4. Mp 120-122 ˚C
(CH2Cl2).
2-(3-Acetylphenyl)pyridine
N
-Oxide (3ae)
¹H
NMR (400 MHz, CDCl3, 293 K): δ = 8.35-8.39
(m, 2 H), 8.07 (t, J = 8.0
Hz, 2 H), 7.60 (t, J = 8.0
Hz, 1 H), 7.50 (t, J = 6.0
Hz, 1 H), 7.36 (t, J = 7.2
Hz, 1 H), 7.26-7.31 (m, 1 H), 2.65 (s, 3 H). ¹³C
NMR (100 MHz, CDCl3, 293 K): δ = 197.6,
148.3, 140.5, 137.1, 133.9, 133.0, 129.3, 128.6, 127.4, 126.2, 125.2,
26.7. ESI-MS: m/z [M + 1]+ = 214.1. ESI-HRMS: m/z [M + H]+ calcd
for C13H12NO2
+:
214.0868; found: 214.0866.