Abstract
In this account, recent advances made on the reactions of several
types of organic azides, such as vinyl azides, cyclic 2-azido alcohols, α-azido
carbonyl compounds, towards the synthesis of nitrogen-containing
molecules are described.
1 Introduction
2 Chemistry of Vinyl Azides
2.1 Thermal [3+2]-Annulation of Vinyl
Azides with 1,3-Dicarbonyl Compounds
2.2 Manganese(III)-Catalyzed Formal [3+2]-Annulation
with 1,3-Dicarbonyl Compounds
2.3 Manganese(III)-Mediated/Catalyzed Formal [3+3]-Annulation
with Cyclopropanols
2.4 Synthesis of Isoquinolines from α-Aryl-Substituted
Vinyl Azides and Internal Alkynes by Rhodium-Copper Bimetallic
Cooperation
3 Chemistry of Cyclic 2-Azido Alcohols
3.1 Manganese(III)-Catalyzed Ring Expansion of 2-Azidocyclobutanols
3.2 Palladium(II)-Catalyzed Ring Expansion of Cyclic 2-Azido Alcohols
4 Chemistry of α-Azido Carbonyl Compounds
4.1 Orthogonal Synthesis of Isoindole and Isoquinoline Derivatives
4.2 Generation of Iminylcopper Species and Their Catalytic Carbon-Carbon
Bond Cleavage under an Oxygen Atmosphere
4.3 Copper(II)-Catalyzed Aerobic Synthesis of Azaspirocyclohexadienones
5 Conclusion
Key words
azides - nitrogen-containing heterocycles - radical
reactions - redox reactions - oxygenations
References
<A NAME="RA59911ST-1">1 </A>
Griess P.
Proc.
R. Soc. London
1864,
13:
375
<A NAME="RA59911ST-2">2 </A>
Curtius T.
Ber.
Dtsch. Chem. Ges.
1890,
23:
3023
For reviews, see:
<A NAME="RA59911ST-3A">3a </A>
Lang S.
Murphy JA.
Chem. Soc. Rev.
2006,
35:
146
<A NAME="RA59911ST-3B">3b </A>
Bräse S.
Gil C.
Knepper K.
Zimmermann V.
Angew. Chem. Int. Ed.
2005,
44:
5188
<A NAME="RA59911ST-3C">3c </A>
Scriven EFV.
Turnbull K.
Chem.
Rev.
1988,
88:
297
<A NAME="RA59911ST-3D">3d </A>
L’abbe G.
Chem. Rev.
1969,
69:
345
<A NAME="RA59911ST-3E">3e </A>
Boyer JH.
Canter FC.
Chem.
Rev.
1954,
54:
1
<A NAME="RA59911ST-3F">3f </A>
Smith PAS.
Org. React.
1946,
3:
337
<A NAME="RA59911ST-4A">4a </A> For
safety issues on the handling of organic azides, see:
Keicher T.
Löbbecke S. In Organic Azides: Syntheses and Applications
Bräse S.
Banert K.
John Wiley & Sons;
Chichester:
2010.
p.3
<A NAME="RA59911ST-5A">5a </A>
Medal M.
Tornoe CW.
Chem.
Rev.
2008,
108:
2952
<A NAME="RA59911ST-5B">5b </A>
Schilling C.
Jung N.
Bräse S. In
Organic Azides: Syntheses and Applications
Bräse S.
Banert K.
John Wiley & Sons;
Chichester:
2010.
p.269
For reviews, see:
<A NAME="RA59911ST-6A">6a </A>
Katsuki T.
Chem.
Lett.
2005,
34:
1304
<A NAME="RA59911ST-6B">6b </A>
Driver TG.
Org. Biomol. Chem.
2010,
8:
3831
<A NAME="RA59911ST-7A">7a </A>
Trost BM.
Angew. Chem. Int. Ed.
Engl.
1995,
34:
259
<A NAME="RA59911ST-7B">7b </A>
Trost BM.
Science (Washington, DC, U.S.)
1991,
254:
1471
<A NAME="RA59911ST-8A">8a </A>
Wender PA.
Verma VA.
Paxton TJ.
Pillow TH.
Acc. Chem. Res.
2008,
41:
40
<A NAME="RA59911ST-8B">8b </A>
Wender PA.
Croatt MP.
Witulski B.
Tetrahedron
2006,
62:
7505
<A NAME="RA59911ST-9A">9a </A>
Timén ÅS.
Risberg E.
Somfai P.
Tetrahedron
Lett.
2003,
44:
5339
<A NAME="RA59911ST-9B">9b </A>
Söderberg BCG.
Curr. Org. Chem.
2000,
4:
727
<A NAME="RA59911ST-9C">9c </A>
Knittel D.
Synthesis
1985,
186
For prior studies on iminyl radical
formation from vinyl azides, see:
<A NAME="RA59911ST-10A">10a </A>
Montevecchi PC.
Navacchia ML.
Spagnolo P.
J. Org. Chem.
1997,
62:
5864
<A NAME="RA59911ST-10B">10b </A>
Bamford AF.
Cook MD.
Roberts BP.
Tetrahedron Lett.
1983,
24:
3779
<A NAME="RA59911ST-11">11 </A> For our previous report on rhodium(II)-catalyzed
indole formation from 2-aryl-2H -azirines,
see:
Chiba S.
Hattori G.
Narasaka K.
Chem. Lett.
2007,
36:
52
<A NAME="RA59911ST-12">12 </A>
Alves MJ.
Gilchrist TL.
Sousa JH.
J. Chem. Soc., Perkin Trans. 1
1999,
1305
<A NAME="RA59911ST-13A">13a </A>
Alves MJ.
Ferreira PMT.
Maia HLS.
Monteiro LS.
Gilchrist TL.
Tetrahedron Lett.
2000,
41:
4991
<A NAME="RA59911ST-13B">13b </A>
Carlson RM.
Lee SY.
Tetrahedron
Lett.
1969,
10:
4001
<A NAME="RA59911ST-13C">13c </A>
Leonard NJ.
Zwanenburg B.
J. Am.
Chem. Soc.
1967,
89:
4456
<A NAME="RA59911ST-14A">14a </A>
Law KW.
Lai TF.
Sammes MP.
Katritzky AR.
Mak TCW.
J.
Chem. Soc., Perkin Trans. 1
1984,
111
<A NAME="RA59911ST-14B">14b </A>
Laurent A.
Mison P.
Nafti A.
Pellissier N.
Tetrahedron
1979,
35:
2285
<A NAME="RA59911ST-14C">14c </A>
Padwa A.
Kulkarni Y.
Tetrahedron Lett.
1979,
20:
107
<A NAME="RA59911ST-14D">14d </A>
Faria dos Santos Filho P.
Schuchardt U.
Angew.
Chem. Int. Ed. Engl.
1977,
16:
647
<A NAME="RA59911ST-15A">15a </A>
Nair V.
George TG.
Tetrahedron
Lett.
2000,
41:
3199
<A NAME="RA59911ST-15B">15b </A>
Gilchrist TL.
Mendonça R.
Synlett
2000,
1843
<A NAME="RA59911ST-15C">15c </A>
Palacios F.
Aparicio D.
de los Santos JM.
Perez de Heredia I.
Rubiales G.
Org. Prep.
Proced. Int.
1995,
27:
171
<A NAME="RA59911ST-16A">16a </A>
Chiba S.
Wang Y.-F.
Lapointe G.
Narasaka K.
Org. Lett.
2008,
10:
313
<A NAME="RA59911ST-16B">16b </A>
Ng EPJ.
Wang Y.
Hui B
W.-Q.
Lapointe G.
Chiba S.
Tetrahedron
2011,
67:
7728
<A NAME="RA59911ST-17A">17a </A>
Moody CJ. In Comprehensive
Organic Synthesis
Vol. 7:
Trost BM.
Fleming I.
Ley S.
Pergamon;
Oxford:
1991.
p.21
<A NAME="RA59911ST-17B">17b </A>
Smolinsky G.
Pryde CA.
J. Org. Chem.
1968,
33:
2411
<A NAME="RA59911ST-17C">17c </A>
L’abbé G.
Angew. Chem. Int. Ed. Engl.
1975,
14:
775
<A NAME="RA59911ST-17D">17d </A>
Hemetsberger H.
Knittle D.
Weidmann H.
Monatsh.
Chem.
1970,
101:
161
<A NAME="RA59911ST-17E">17e </A>
MacKenzie AR.
Moody CJ.
Rees CW.
J. Chem. Soc., Chem. Commun.
1983,
1372
<A NAME="RA59911ST-17F">17f </A>
Bolton RE.
Moody CJ.
Pass M.
Rees CW.
Tojo G.
J. Chem. Soc., Perkin Trans. 1
1988,
2491
Iron(II)- and Rh(II)-catalyzed
indole formation from azido-substituted cinnamates has been reported,
see:
<A NAME="RA59911ST-18A">18a </A>
Bonnamour J.
Bolm C.
Org. Lett.
2011,
13:
2012
<A NAME="RA59911ST-18B">18b </A>
Stokes BJ.
Dong H.
Leslie BE.
Pumphrey AL.
Driver TG.
J. Am. Chem. Soc.
2007,
129:
7500
<A NAME="RA59911ST-19A">19a </A>
Ng EPJ.
Wang Y.-F.
Chiba S.
Synlett.
2011,
783
<A NAME="RA59911ST-19B">19b </A>
Wang Y.-F.
Toh KK.
Chiba S.
Org.
Lett.
2008,
10:
5019
For reviews on the synthesis of
azaheterocycles using iminyl radicals, see:
<A NAME="RA59911ST-20A">20a </A>
Stella L. In Radicals in Organic Synthesis
Vol.
2:
Renaud P.
Sibi MP.
Wiley-VCH;
Weinheim:
2001.
p.407
<A NAME="RA59911ST-20B">20b </A>
Zard SZ.
Chem. Soc. Rev.
2008,
37:
1603
<A NAME="RA59911ST-20C">20c </A>
Kitamura M.
Narasaka K.
Bull. Chem. Soc. Jpn.
2008,
81:
539
<A NAME="RA59911ST-20D">20d </A>
Mikami T.
Narasaka K. In Advances
in Free Radical Chemistry
Vol. 2:
Zard SZ.
JAI;
Stamford / CT:
1999.
p.45
<A NAME="RA59911ST-20E">20e </A>
Fallis AG.
Brinza IM.
Tetrahedron
1997,
53:
17543
<A NAME="RA59911ST-20F">20f </A>
Zard SZ.
Synlett
1996,
1148
For reviews, see:
<A NAME="RA59911ST-21A">21a </A>
Melikyan GG.
Org. React.
1997,
49:
427
<A NAME="RA59911ST-21B">21b </A>
Snider BB.
Chem. Rev.
1996,
96:
339
<A NAME="RA59911ST-22">22 </A>
Alonso-Cruz CR.
Kennedy AR.
Rodríguez MS.
Suárez E.
Org.
Lett.
2003,
5:
3729
<A NAME="RA59911ST-23">23 </A>
Figgis BN.
Raston CL.
Sharma RP.
White AH.
Aust.
J. Chem.
1978,
31:
2545
<A NAME="RA59911ST-24">24 </A>
Fortner KC.
Shair MD.
J. Am. Chem. Soc.
2007,
129:
1032
<A NAME="RA59911ST-25">25 </A>
Narasaka K.
Miyoshi N.
Iwakura K.
Okauchi T.
Chem. Lett.
1989,
2169
<A NAME="RA59911ST-26A">26a </A>
Wang Y.-F.
Toh KK.
Ng EPJ.
Chiba S.
J.
Am. Chem. Soc.
2011,
133:
6411
<A NAME="RA59911ST-26B">26b </A>
Wang Y.-F.
Chiba S.
J. Am. Chem. Soc.
2009,
131:
12570
For the oxidative generation of β-carbonyl
radicals from cyclopropanols using Mn(pic)3 , see:
<A NAME="RA59911ST-27A">27a </A>
Iwasawa N.
Hayakawa S.
Funahashi M.
Isobe K.
Narasaka K.
Bull. Chem.
Soc. Jpn.
1993,
66:
819
<A NAME="RA59911ST-27B">27b </A>
Iwasawa N.
Hayakawa S.
Isobe K.
Narasaka K.
Chem. Lett.
1991,
1193
<A NAME="RA59911ST-28">28 </A>
Chiba S.
Cao ZY.
El Bialy SAA.
Narasaka K.
Chem. Lett.
2006,
35:
18
<A NAME="RA59911ST-29A">29a </A>
Hasegawa E.
Tsuchida H.
Tamura M.
Chem. Lett.
2005,
34:
688
<A NAME="RA59911ST-29B">29b </A>
Booker-Milburn KI.
Jones JL.
Sibley GEM.
Cox R.
Meadows J.
Org. Lett.
2003,
5:
1107
<A NAME="RA59911ST-29C">29c </A>
Booker-Milburn KI.
Barker A.
Brailsford W.
Cox B.
Mansley TE.
Tetrahedron
1998,
54:
15321
<A NAME="RA59911ST-30">30 </A>
Snider BB.
Kwon T.
J. Org. Chem.
1992,
57:
2399
For selected reports on the preparation
of δ-lactams, see:
<A NAME="RA59911ST-31A">31a </A>
Zhou C.-Y.
Che C.-M.
J. Am. Chem. Soc.
2007,
129:
5828
<A NAME="RA59911ST-31B">31b </A>
Patil NT.
Huo Z.
Bajracharya GB.
Yamamoto Y.
J.
Org. Chem.
2006,
71:
3612
<A NAME="RA59911ST-31C">31c </A>
Taylor
PJM.
Bull SD.
Andrews PC.
Synlett
2006,
1347
<A NAME="RA59911ST-31D">31d </A>
Hu T.
Li C.
Org. Lett.
2005,
7:
2035
The Renaud group has developed
an elegant procedure for the synthesis of a series of γ-lactams
and their derivatives by radical carboazidation of alkenes followed
by the reduction of the azides and subsequent lactam formation,
see:
<A NAME="RA59911ST-32A">32a </A>
Lapointe G.
Schenk K.
Renaud P.
Chem.
Eur. J.
2011,
17:
3207
<A NAME="RA59911ST-32B">32b </A>
Panchaud P.
Ollivier C.
Renaud P.
Zigmantas S.
J. Org. Chem.
2004,
69:
2755
<A NAME="RA59911ST-32C">32c </A>
Renaud P.
Ollivier C.
Panchaud P.
Angew.
Chem. Int. Ed.
2002,
41:
3460
<A NAME="RA59911ST-33">33 </A>
Du H.
Long J.
Shi Y.
Org. Lett.
2006,
8:
2827
For discussions on the racemization
of cyclohexyl radicals, see:
<A NAME="RA59911ST-34A">34a </A>
Buckmelter AJ.
Kim AI.
Rychnovsky SD.
J. Am. Chem. Soc.
2000,
122:
9386
<A NAME="RA59911ST-34B">34b </A>
Roberts BP.
Steel AJ.
J.
Chem. Soc., Perkin Trans. 2
1992,
2025 ;
and references cited therein
For recent selected reports, see:
<A NAME="RA59911ST-35A">35a </A>
Thomas JB.
Zhang L.
Navarro HA.
Carroll FI.
J.
Med. Chem.
2006,
49:
5597
<A NAME="RA59911ST-35B">35b </A>
Pluotno A.
Carmeli S.
Tetrahedron
2005,
61:
575
<A NAME="RA59911ST-35C">35c </A>
Kim IJ.
Dersch CM.
Rothman RB.
Jacobson AE.
Rice KC.
Bioorg. Med. Chem.
2004,
12:
4543
<A NAME="RA59911ST-36">36 </A> For a report on carbon-carbon
bond formation at bridgehead iminium cations for preparing 1-alkylated
2-azabicyclo-[3.3.1]nonanes, see:
Yamazaki N.
Suzuki H.
Kibayashi C.
J. Org. Chem.
1997,
62:
8280
<A NAME="RA59911ST-37">37 </A>
Kraus GA.
Hon Y.-S.
Thomas PJ.
Laramay S.
Liras S.
Hanson J.
Chem. Rev.
1989,
89:
1591
<A NAME="RA59911ST-38">38 </A>
Bächli E.
Vamvacas C.
Schmid H.
Karrer P.
Helv. Chim. Acta
1957,
40:
1167
<A NAME="RA59911ST-39">39 </A>
Borris RP.
Guggisberg A.
Hesse M.
Helv.
Chim. Acta
1984,
67:
455
<A NAME="RA59911ST-40A">40a </A>
Quirante J.
Escolano C.
Merino A.
Bonjoch J.
J.
Org. Chem.
1998,
63:
968
<A NAME="RA59911ST-40B">40b </A>
Quirante J.
Escolano C.
Bosch J.
Bonjoch J.
J. Chem. Soc., Chem. Commun.
1995,
2141
<A NAME="RA59911ST-41">41 </A>
Brown HC.
Yoon NM.
J. Am. Chem. Soc.
1966,
88:
1464
<A NAME="RA59911ST-42">42 </A>
Fujii T.
Ohba M.
Ohashi T.
Tetrahedron
1993,
49:
1879
For recent reviews on carbon-hydrogen
bond functionalization, see:
<A NAME="RA59911ST-43A">43a </A>
Colby DA.
Bergman RG.
Ellman JA.
Chem. Rev.
2010,
110:
624
<A NAME="RA59911ST-43B">43b </A>
Lyons TW.
Sanford MS.
Chem.
Rev.
2010,
110:
1147
<A NAME="RA59911ST-43C">43c </A>
Sun C.-L.
Li B.-J.
Shi Z.-J.
Chem.
Commun.
2010,
46:
677
<A NAME="RA59911ST-43D">43d </A>
Ackermann L.
Vicente R.
Kapdi AR.
Angew.
Chem. Int. Ed.
2009,
48:
9792
<A NAME="RA59911ST-43E">43e </A>
Chen X.
Engle KM.
Wang D.-H.
Yu J.-Q.
Angew. Chem. Int. Ed.
2009,
48:
5094
<A NAME="RA59911ST-43F">43f </A>
Kulkarni AA.
Daugulis O.
Synthesis
2009,
4087
<A NAME="RA59911ST-43G">43g </A>
Kakiuchi F.
Kochi T.
Synthesis
2008,
3013
<A NAME="RA59911ST-44A">44a </A>
Davies DL.
Al-Duaij O.
Fawcett J.
Giardiello M.
Hilton ST.
Russell DR.
Dalton Trans.
2003,
4132
For a review on carboxylate-assisted transition-metal-catalyzed carbon-hydrogen
bond functionalization, see:
<A NAME="RA59911ST-44B">44b </A>
Ackermann L.
Chem.
Rev.
2011,
111:
1315
<A NAME="RA59911ST-45">45 </A>
Li L.
Brennessel WW.
Jones WD.
Organometallics
2009,
28:
3492
For reports on Rh(III)-catalyzed
oxidative carbon-hydrogen bond functionalization/carbon-nitrogen
bond formation with alkynes, see:
<A NAME="RA59911ST-46A">46a </A>
Stuart DR.
Alsabeh P.
Kuhn M.
Fagnou K.
J. Am. Chem. Soc.
2010,
132:
18326
<A NAME="RA59911ST-46B">46b </A>
Chen J.
Song G.
Pan C.-L.
Li X.
Org. Lett.
2010,
12:
5426
<A NAME="RA59911ST-46C">46c </A>
Su Y.
Zhao M.
Han K.
Song G.
Li X.
Org. Lett.
2010,
12:
5462
<A NAME="RA59911ST-46D">46d </A>
Hyster TK.
Rovis T.
J. Am. Chem. Soc.
2010,
132:
10565
<A NAME="RA59911ST-46E">46e </A>
Rakshit S.
Patureau FW.
Glorius F.
J.
Am. Chem. Soc.
2010,
132:
9585
<A NAME="RA59911ST-46F">46f </A>
Morimoto K.
Hirano K.
Satoh T.
Miura M.
Org. Lett.
2010,
12:
2068
<A NAME="RA59911ST-46G">46g </A>
Mochida S.
Umeda N.
Hirano K.
Satoh T.
Miura M.
Chem. Lett.
2010,
39:
744
<A NAME="RA59911ST-46H">46h </A>
Guimond N.
Fagnou K.
J. Am. Chem. Soc.
2009,
131:
12050
<A NAME="RA59911ST-46I">46i </A>
Fukutani T.
Umeda N.
Hirano K.
Satoh T.
Miura M.
Chem. Commun.
(Cambridge)
2009,
5141
<A NAME="RA59911ST-46J">46j </A>
Stuart DR.
Bertrand-Laperle M.
Burgess KMN.
Fagnou K.
J.
Am. Chem. Soc.
2008,
130:
16474
For a report on the Rh(III)-catalyzed
redox-neutral synthesis of azaheterocycles from benzhydroxamic acid
derivatives and O -acetyloximes with alkynes,
see:
<A NAME="RA59911ST-47A">47a </A>
Guimond N.
Gouliaras C.
Fagnou K.
J.
Am. Chem. Soc.
2010,
132:
6908
<A NAME="RA59911ST-47B">47b </A>
Too PC.
Wang Y.-F.
Chiba S.
Org. Lett.
2010,
12:
5688
<A NAME="RA59911ST-48">48 </A>
Wang Y.-F.
Toh KK.
Lee J.-Y.
Chiba S.
Angew. Chem. Int. Ed.
2011,
50:
5927
For reports on the use of DMF as
a hydrogen radical source, see:
<A NAME="RA59911ST-49A">49a </A>
Kamiya I.
Tsunoyama H.
Tsukuda T.
Sakurai H.
Chem. Lett.
2007,
36:
646
<A NAME="RA59911ST-49B">49b </A>
Minisci F.
Citterio A.
Vismara E.
Giordano C.
Tetrahedron
1985,
41:
4157
<A NAME="RA59911ST-49C">49c </A>
Palla G.
Tetrahedron
1981,
37:
2917
<A NAME="RA59911ST-50">50 </A>
Auricchio S.
Grassi S.
Malpezzi L.
Sartori AS.
Truscello AM.
Eur. J. Org. Chem.
2001,
1183
<A NAME="RA59911ST-51A">51a </A>
Kim J.
Chang S.
J.
Am. Chem. Soc.
2010,
132:
10272
<A NAME="RA59911ST-51B">51b </A>
Malkhasian AYS.
Finch ME.
Nikolovski B.
Menon A.
Kucera BE.
Chavez FA.
Inorg. Chem.
2007,
46:
2950
<A NAME="RA59911ST-51C">51c </A>
Teo JJ.
Chang Y.
Zeng HC.
Langmuir
2006,
22:
7369
Recent literature reports have
shown that Cu(II)-TEMPO complexes work as ionic electrophiles,
see:
<A NAME="RA59911ST-52A">52a </A>
Van Humbeck JF.
Simonovich SP.
Knowles RR.
Macmillan DWC.
J.
Am. Chem. Soc.
2010,
132:
10012
<A NAME="RA59911ST-52B">52b </A>
Michel C.
Belanzoni P.
Gamez P.
Reedjik J.
Baerends EJ.
Inorg.
Chem.
2009,
48:
11909
<A NAME="RA59911ST-53A">53a </A>
Terao Y.
Wakui H.
Nomoto M.
Satoh T.
Miura M.
Nomura M.
J. Org. Chem.
2003,
68:
5236
<A NAME="RA59911ST-53B">53b </A>
Wakui H.
Kawasaki S.
Satoh T.
Miura M.
Nomura M.
J.
Am. Chem. Soc.
2004,
126:
8658
<A NAME="RA59911ST-53C">53c </A>
Nishimura T.
Ohe K.
Uemura S.
J.
Org. Chem.
2001,
66:
1455
<A NAME="RA59911ST-53D">53d </A>
Nishimura T.
Uemura S.
J. Am. Chem. Soc.
1999,
121:
11010
<A NAME="RA59911ST-53E">53e </A>
Nishimura T.
Ohe K.
Uemura S.
J.
Am. Chem. Soc.
1999,
121:
2645
<A NAME="RA59911ST-53F">53f </A>
Matsumura S.
Maeda Y.
Nishimura T.
Uemura S.
J. Am. Chem. Soc.
2003,
125:
8862
<A NAME="RA59911ST-53G">53g </A>
Nishimura T.
Uemura S.
J. Am. Chem. Soc.
2000,
122:
12049
<A NAME="RA59911ST-53H">53h </A>
Harayama H.
Kuroki T.
Kimura M.
Tanaka S.
Tamaru Y.
Angew.
Chem. Int. Ed. Engl.
1997,
36:
2352
<A NAME="RA59911ST-53I">53i </A>
Necas D.
Tursky M.
Kotora M.
J.
Am. Chem. Soc.
2004,
126:
10222
<A NAME="RA59911ST-53J">53j </A>
Terai H.
Takaya H.
Murahashi S.-I.
Synlett
2004,
2185
<A NAME="RA59911ST-54">54 </A> For a report on the Mn(III)-based β-fission
of cyclobutanol derivatives, see:
Snider BB.
Vo NH.
Foxman BM.
J.
Org. Chem.
1993,
58:
7228
<A NAME="RA59911ST-55">55 </A>
Wang, Y.-F.; Toh, K. K.; Chiba, S.
unpublished results.
<A NAME="RA59911ST-56">56 </A>
Chiba S.
Xu Y.-J.
Wang Y.-F.
J.
Am. Chem. Soc.
2009,
131:
12886
Nitrile formation by radical fragmentation
of 2-azido alcohols with cleavage of the carbon-carbon
bond has been reported, see:
<A NAME="RA59911ST-57A">57a </A>
Hernández R.
León EI.
Moreno P.
Suárez E.
J.
Org. Chem.
1997,
62:
8974
<A NAME="RA59911ST-57B">57b </A>
Shimizu I.
Fujita M.
Nakajima T.
Sato T.
Synlett
1997,
887
For a report on the coordination
of the internal nitrogen of an azido moiety to a Pd(II) complex,
see:
<A NAME="RA59911ST-58A">58a </A>
Barz M.
Herdweck E.
Thiel WR.
Angew.
Chem. Int. Ed.
1998,
37:
2262
For a review on the coordination of organic azides to transition
metals, see:
<A NAME="RA59911ST-58B">58b </A>
Cenini S.
Gallo E.
Caselli A.
Ragaini F.
Fantauzzi S.
Piangiolino C.
Coord. Chem. Rev.
2006,
250:
1234
<A NAME="RA59911ST-59A">59a </A>
Mi B.-X.
Wang P.-F.
Liu M.-W.
Kwong H.-L.
Wong N.-B.
Lee C.-S.
Lee S.-T.
Chem. Mater.
2003,
15:
3148
<A NAME="RA59911ST-59B">59b </A>
Ding Y.
Hay AS.
J. Polym. Sci., Part
A: Polym. Chem.
1999,
37:
3293
<A NAME="RA59911ST-59C">59c </A>
Gauvin S.
Santerre F.
Dodelet JP.
Ding Y.
Hlil AR.
Hay AS.
Anderson J.
Armstrong NR.
Gorjanc TC.
D’Iorio M.
Thin
Solid Films
1999,
353:
218
<A NAME="RA59911ST-59D">59d </A>
Matuszewski BK.
Givens RS.
Srinivasachar K.
Carlson RG.
Higuchi T.
Anal. Chem.
1987,
59:
1102
<A NAME="RA59911ST-59E">59e </A>
Zweig A.
Metzler G.
Maurer A.
Roberts BG.
J. Am. Chem. Soc.
1967,
89:
4091
<A NAME="RA59911ST-60A">60a </A>
Duan S.
Sinha-Mahapatra DK.
Herndon JW.
Org. Lett.
2008,
10:
1541
<A NAME="RA59911ST-60B">60b </A>
Chen Y.-L.
Lee M.-H.
Wong W.-Y.
Lee AWM.
Synlett
2006,
2510
<A NAME="RA59911ST-60C">60c </A>
Chen Z.
Müller P.
Swager TM.
Org. Lett.
2006,
8:
273
<A NAME="RA59911ST-60D">60d </A>
LeHoullier CS.
Gribble GW.
J.
Org. Chem.
1983,
48:
2364
For reviews, see:
<A NAME="RA59911ST-61A">61a </A>
Nair V.
Suja TD.
Tetrahedron
2007,
63:
12247
<A NAME="RA59911ST-61B">61b </A>
Padwa A. In
1,3-Dipolar Cycloaddition Chemistry
Vol.
2:
Padwa A.
Wiley-Interscience;
New York:
1984.
p.316
<A NAME="RA59911ST-62">62 </A>
Hui BW.-Q.
Chiba S.
Org. Lett.
2009,
11:
729
For the generation of imines from α-azido
ketones and esters under strong basic conditions, see:
<A NAME="RA59911ST-63A">63a </A>
Manis PA.
Rathke MW.
J.
Org. Chem.
1980,
45:
4952
<A NAME="RA59911ST-63B">63b </A>
Edwards OE.
Purushothaman KK.
Can.
J. Chem.
1964,
42:
712
For recent examples of the 6π-electrocyclization
of azatrienes, see:
<A NAME="RA59911ST-64A">64a </A>
Manning JR.
Davies HML.
J.
Am. Chem. Soc.
2008,
130:
8602
<A NAME="RA59911ST-64B">64b </A>
Liu S.
Liebeskind LS.
J. Am.
Chem. Soc.
2008,
130:
6918
<A NAME="RA59911ST-64C">64c </A>
Colby DA.
Bergman RG.
Ellman JA.
J. Am. Chem. Soc.
2008,
130:
3645
<A NAME="RA59911ST-64D">64d </A>
Meketa ML.
Weinreb SM.
Nakao Y.
Fusetani N.
J. Org.
Chem.
2007,
72:
4892
<A NAME="RA59911ST-64E">64e </A>
Tanaka K.
Mori H.
Yamamoto M.
Katsumura S.
J. Org. Chem.
2001,
66:
3099 ; and references cited therein
<A NAME="RA59911ST-65">65 </A>
Chiba S.
Zhang L.
Ang GY.
Hui BW.-Q.
Org. Lett.
2010,
12:
2052
<A NAME="RA59911ST-66">66 </A>
Zhang L.
Ang G.-Y.
Chiba S.
Org.
Lett.
2010,
12:
3682
<A NAME="RA59911ST-67">67 </A> For the chemical reactivity of
(acylperoxy)metals, see:
Cornell CN.
Sigman MS. In Activation
of Small Molecules
Tolman WB.
Wiley;
Weinheim:
2006.
p.159-186 ; and references cited therein
<A NAME="RA59911ST-68">68 </A>
Chiba S.
Zhang L.
Lee J.-Y.
J.
Am. Chem. Soc.
2010,
132:
7266
For reviews, see:
<A NAME="RA59911ST-69A">69a </A>
Dohi T.
Kita Y.
Chem. Commun. (Cambridge)
2009,
2073
<A NAME="RA59911ST-69B">69b </A>
Quideau S.
Pouysegu L.
Deffieux D.
Synlett
2008,
467
<A NAME="RA59911ST-69C">69c </A>
Ciufolini MA.
Braun NA.
Canesi S.
Ousmer M.
Chang J.
Chai D.
Synthesis
2007,
3759
<A NAME="RA59911ST-70">70 </A>
Kusama H.
Yamashita Y.
Uchiyama K.
Narasaka K.
Bull. Chem. Soc. Jpn.
1997,
70:
965
For GlyT1 transporter inhibitors
bearing diazaspiro structures, see:
<A NAME="RA59911ST-71A">71a </A>
Marshall HR. inventors; WO 2008092879.
<A NAME="RA59911ST-71B">71b </A>
Dean AW, and
Porter RA. inventors; WO 2007014762.
<A NAME="RA59911ST-72">72 </A>
Lucas HR.
Li L.
Narducci Sarjeant AA.
Vance MA.
Solomon EI.
Karlin KD.
J.
Am. Chem. Soc.
2009,
131:
3230