Abstract
A practical and mild strategy has been developed for the cross-coupling
of O-arylation of phenol with differently substituted aryl halides
and heteroaryl iodides using low catalyst loading of copper iodide
under low operating temperature in DMF with TMHD as the ligand and
Cs2 CO3 as the base. This method tolerates a
variety of functional groups including sterically hindered phenols and
heteroaryl iodides to afford products in good to excellent yields (up
to 95%).
Key words
cross-coupling - mild conditions - low catalyst
loading - copper-catalyzed - O-arylations - phenol
References and Notes
For representative papers on pharmaceutical
compounds, see:
<A NAME="RD29711ST-1A">1a </A>
Evans DA.
Devries KM.
In Glycopeptide Antibiotics, Drugs and the
Pharmaceutical Sciences
Vol. 63:
Nagarajan R.
Marcel Decker, Inc.;
New
York:
1994.
p.63-104
<A NAME="RD29711ST-1B">1b </A>
Rao AV.
Rama Gurjar MK.
Reddy L.
Rao AS.
Chem.
Rev.
1995,
95:
2135
<A NAME="RD29711ST-1C">1c </A>
Wada CK.
Holms JH.
Curtin ML.
Dai Y.
Florjancic AS.
Garland RB.
Guo Y.
Heyman HR.
Stacey JR.
Steinman DH.
Albert DH.
Bouska JJ.
Elmore IN.
Goodfellow CL.
Marcotte PA.
Tapang P.
Morgan DW.
Michaelides MR.
Davidsen SK.
J. Med. Chem.
2002,
45:
219
<A NAME="RD29711ST-1D">1d </A>
Hodous BL.
Feuns-Meyer SD.
Hughes PE.
Albrecht BK.
Bellon S.
Bready J.
Caenepeel S.
Cee VJ.
Chaffee SC.
Coxon A.
Emery M.
Fretland J.
Gallant P.
Gu Y.
Hoffman D.
Johnson RE.
Kendall R.
Kim JL.
Long AM.
Morrison M.
Olivieri PR.
Patel VF.
Polverino A.
Rose P.
Tempest P.
Wang L.
Whittington DA.
Zhao HL.
J. Med. Chem.
2007,
50:
611
<A NAME="RD29711ST-1E">1e </A>
Liu LB.
Siegmund A.
Xi N.
Kaplan-Lefko P.
Rex K.
Cheti A.
Lin J.
Moriguchi J.
Berry L.
Huang L.
Teffera Y.
Yang YI.
Zhang YH.
Bellon SF.
Lee M.
Shimanovich R.
Bak A.
Dominguez C.
Norman MH.
Harmange JC.
Dussault I.
Kimt TS.
J. Med. Chem.
2008,
51:
3688
<A NAME="RD29711ST-1F">1f </A>
Caron S.
Do NM.
Sieser JE.
Whritenour DC.
Hill PD.
Org. Process Res. Dev.
2009,
13:
324
For representative papers on agricultural compounds, see:
<A NAME="RD29711ST-1G">1g </A>
Draper WM.
Casida JE.
J.
Agric. Food Chem.
1983,
31:
1201
<A NAME="RD29711ST-1H">1h </A>
The
Pesticide Manual
10th ed.:
Tomlin C.
British Crop Protection Council;
Farnham:
1994.
<A NAME="RD29711ST-1I">1i </A>
Scrano L.
Bufo SA.
D’Auria M.
Meallier P.
Behechti A.
Shramm KW.
J. Environ.
Qual.
2002,
31:
268
For representative papers on polymer industries, see:
<A NAME="RD29711ST-1J">1j </A>
Labadie JW.
Hedrick JL.
Ueda M.
Am. Chem. Soc. Symp. Ser.
1996,
624:
210
<A NAME="RD29711ST-1K">1k </A>
Theil F.
Angew.
Chem. Int. Ed.
1999,
38:
2345
<A NAME="RD29711ST-1L">1l </A>
Laskoski M.
Dominguez DD.
Keller TM.
J. Polym. Sci., Part A: Polym. Chem.
2006,
44:
4559
<A NAME="RD29711ST-2">2 </A>
Ullmann F.
Chem.
Ber.
1904,
37:
853
<A NAME="RD29711ST-3A">3a </A>
Lindley J.
Tetrahedron
1984,
40:
1433
<A NAME="RD29711ST-3B">3b </A>
Paul S.
Gupta M.
Tetrahedron Lett.
2004,
45:
8825
<A NAME="RD29711ST-4A">4a </A>
Marcoux J.-F.
Doye S.
Buchwald SL.
J. Am. Chem. Soc.
1997,
119:
10539
<A NAME="RD29711ST-4B">4b </A>
Fagan PF.
Hauptman E.
Shapiro R.
Casalnuovo A.
J. Am.
Chem. Soc.
2000,
122:
5043
<A NAME="RD29711ST-4C">4c </A>
Gujadhur R.
Venkataraman D.
Synth. Commun.
2001,
31:
2865
<A NAME="RD29711ST-4D">4d </A>
Gujadhur RK.
Bates CG.
Venkataraman D.
Org. Lett.
2001,
3:
4315
<A NAME="RD29711ST-4E">4e </A>
Ma D.
Cai Q.
Org. Lett.
2003,
5:
3799
<A NAME="RD29711ST-4F">4f </A>
Cai Q.
Zou B.
Ma D.
Angew.
Chem. Int. Ed.
2006,
45:
1276
<A NAME="RD29711ST-4G">4g </A>
Chen Y.-J.
Chen H.-H.
Org. Lett.
2006,
8:
5609
<A NAME="RD29711ST-4H">4h </A>
Ouali A.
Spindler JF.
Cristau HJ.
Taillefer M.
Adv. Synth.
Catal.
2006,
348:
499
<A NAME="RD29711ST-4I">4i </A>
Rao H.
Jin Y.
Fu H.
Jiang Y.
Zhao Y.
Chem. Eur.
J.
2006,
12:
3636
<A NAME="RD29711ST-4J">4j </A>
Lv X.
Bao W.
J. Org. Chem.
2007,
72:
3863
<A NAME="RD29711ST-4K">4k </A>
Naidu AB.
Raghunath OR.
Prasad DJC.
Sekar G.
Tetrahedron
Lett.
2008,
49:
1057
<A NAME="RD29711ST-4L">4l </A>
Niu J.
Zhou H.
Li Z.
Xu J.
Hu S.
J. Org. Chem.
2008,
73:
7814
<A NAME="RD29711ST-4M">4m </A>
Liu Y.-H.
Li G.
Yang L.-M.
Tetrahedron
Lett.
2009,
50:
343
<A NAME="RD29711ST-4N">4n </A>
Maiti D.
Buchwald SL.
J. Am. Chem. Soc.
2009,
131:
17423
<A NAME="RD29711ST-4O">4o </A>
Zhang Q.
Wang D.
Wang X.
Ding K.
J. Org. Chem.
2009,
74:
7187
<A NAME="RD29711ST-4P">4p </A>
Maiti D.
Buchwald SL.
J. Org. Chem.
2010,
75:
1791
<A NAME="RD29711ST-5">5 </A>
Marcoux J.-F.
Doye S.
Buchwald SL.
J.
Am. Chem. Soc.
1997,
119:
10539
<A NAME="RD29711ST-6">6 </A>
Buck E.
Song ZJ.
Tschaen D.
Dormer PG.
Volante RP.
Reider PJ.
Org. Lett.
2002,
4:
1623
<A NAME="RD29711ST-7">7 </A>
Larsson P.-F.
Correa A.
Carril M.
Norrby P.-O.
Bolm C.
Angew.
Chem. Int. Ed.
2009,
48:
5691
<A NAME="RD29711ST-8">8 </A>
Representative Procedure for O-Arylation
of Phenols: A mixture of CuI (Sigma-Aldrich, 99.99% purity,
0.0147 mmol), TMHD (0.147 mmol), Cs2 CO3 (2.94
mmol) was dissolved in DMF (0.3 mL). Subsequently, the aryl halide (1.47
mmol) and the phenol (2.21 mmol) were added to the reaction vial
and a screw cap was fitted to it. The reaction mixture was stirred
under air in a closed system at 60 ˚C for 24 h and the
heterogeneous mixture was then cooled to r.t. and diluted with EtOAc.
The resulting solution was directly filtered through a pad of Celite.
The organic extracts were washed with H2 O twice. The
combined organic extracts were dried with anhyd Na2 SO4 and
the solvent was removed under reduced pressure. The crude product
was purified by silica gel column chromatography to afford the O-arylated product.
The identity and purity of known products were confirmed by ¹ H
NMR and ¹³ C NMR spectroscopic analysis.