References and Notes
For reviews on indium chemistry,
see:
<A NAME="RD02012ST-1A">1a</A>
Cintas P.
Synlett
1995,
1089
<A NAME="RD02012ST-1B">1b</A>
Li CJ.
Tetrahedron
1996,
52:
5643
<A NAME="RD02012ST-1C">1c</A>
Marshall JA.
Chemtracts: Org. Chem.
1997,
10:
481
<A NAME="RD02012ST-1D">1d</A>
Li CJ. In Green Chemistry:
Frontiers in Benign Chemical Syntheses and Processes
Anastas P.
Williamson TC.
Oxford University Press;
New York:
1998.
p.Chap. 14
<A NAME="RD02012ST-1E">1e</A>
Paquette LA.
Green Chemistry: Frontiers
in Benign Chemical Syntheses and Processes
Anastas P.
Williamson TC.
Oxford
University Press;
New York:
1998.
p.Chap. 15
<A NAME="RD02012ST-1F">1f</A>
Li C.-J.
Chan T.-H.
Tetrahedron
1999,
55:
11149
<A NAME="RD02012ST-1G">1g</A>
Ranu BC.
Eur. J. Org. Chem.
2000,
2347
<A NAME="RD02012ST-1H">1h</A>
Podlech J.
Maier TC.
Synthesis
2003,
633
<A NAME="RD02012ST-2A">2a</A>
Araki S.
Ito H.
Butsugan Y.
J. Org. Chem.
1988,
53:
1831
<A NAME="RD02012ST-2B">2b</A>
Araki S.
Kamei T.
Hirashita T.
Yamamura H.
Kawai M.
Org.
Lett.
2000,
2:
847
<A NAME="RD02012ST-2C">2c</A>
Tan K.-T.
Chang S.-S.
Cheng H.-S.
Loh T.-P.
J. Am. Chem. Soc.
2003,
125:
2958
<A NAME="RD02012ST-3">3</A>
Isaac MB.
Chan T.-H.
J. Chem. Soc., Chem. Commun.
1995,
1003
<A NAME="RD02012ST-4">4</A>
Augé J.
Lubin-Germain N.
Seghrouchni L.
Tetrahedron Lett.
2002,
43:
5255
<A NAME="RD02012ST-5">5</A>
Hirashita T.
Kinoshita K.
Yamamura H.
Kawai M.
Araki S.
J.
Chem. Soc., Perkin Trans. 1
2000,
825
<A NAME="RD02012ST-6">6</A>
Araki S.
Butsugan Y.
J. Chem. Soc., Chem. Commun.
1989,
1286
<A NAME="RD02012ST-7A">7a</A>
Soengas RG.
Estévez AM.
Eur. J. Org. Chem.
2010,
5190
<A NAME="RD02012ST-7B">7b</A>
Soengas RG.
Estévez AM.
Tetrahedron
Lett.
2012,
53:
570
<A NAME="RD02012ST-7C">7c</A>
Soengas, R. G.; Rodríguez-Solla,
H.; Alvaredo, N. in preparation.
<A NAME="RD02012ST-8A">8a</A> Aluminum,
zinc, or manganese as regenerant:
Araki S.
Jin S.-J.
Idou Y.
Butsugan Y.
Bull. Chem. Soc. Jpn.
1992,
65:
1736
<A NAME="RD02012ST-8B">8b</A>
Loh T.-P.
Li X.-R.
Angew. Chem., Int. Ed. Engl.
1997,
36:
980
<A NAME="RD02012ST-8C">8c</A>
Augé J.
Lubin-Germain N.
Thiaw-Woaye A.
Tetrahedron
Lett.
1999,
40:
9245
<A NAME="RD02012ST-8D">8d</A>
Augé J.
Lubin-Germain N.
Marque S.
Seghrouchni L.
J. Organomet. Chem.
2003,
679:
79
<A NAME="RD02012ST-8E">8e</A>
Steurer S.
Podlech J.
Adv. Synth. Catal.
2001,
343:
251
<A NAME="RD02012ST-8F">8f</A>
Preite MD.
Jorquera-Geroldi HA.
Pérez-Carvajal A.
ARKIVOC
2011,
(vii):
380
<A NAME="RD02012ST-9">9</A>
Sigma Aldrich on-line catalogue.
<A NAME="RD02012ST-10">10</A>
Physical Data
of 2-Nitro-1-phenylethanol (3a)
The aqueous workup
gave 3a as a yellow oil. ¹H
NMR (300 MHz, CDCl3): δ = 2.87 (br
s, 1 H, OH), 4.53-4.61 (m, 2 H, H-2), 5.29-5.50
(m, 1 H, H-1), 7.41-7.43 (m, 5 H, Ph) ppm.
<A NAME="RD02012ST-11">11</A>
General Procedure
for the Henry-Type Addition of Bromoalkanes 2a-g to Aldehydes
1a-g
The appropriate bromonitroalkane 2a-g (1.5
mmol) was added to a suspension of activated zinc powder (10 mmol) and
indium powder (0.12 mmol) in THF (2 mL), and the mixture was sonicated
for 20 min. The corresponding aldehyde 1a-g (1 mmol) was then added, and sonication
was continued for a further 4 h. The reaction mixture was quenched
with sat. aq NaHCO3 (15 mL) and extracted with Et2O
(3 × 30 mL). The combined organic layers
were dried over MgSO4, filtered, and the solvent was
evaporated in vacuo to obtain the corresponding 2-nitroalkanols.
<A NAME="RD02012ST-12">12</A>
As examples of the obtained nitroalkanols,
we present the physical data of compounds 3d,f-h.
1-(4-Methoxyphenyl)-2-methyl-2-nitropropan-1-ol
(3d)
The aqueous workup afforded 3d as
a yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 1.41
and 1.55 (2 s, 2 × 3 H, 2 CH3), 3.79
(s, 3 H, OCH3), 5.23 (br s, 1 H, OH), 5.28 (s, 1 H, H-1), 6.88
(d, 2 H, H-3,5 of Ar), 7.28 (d, 2 H, H-2,6 of Ar) ppm.
2,5-Dimethyl-2-nitrohexan-3-ol (3f)
After
the aqueous workup 3f was obtained as a
yellow oil.
¹H NMR (300 MHz, CDCl3): δ = 0.89-1.01
(m, 2 × 3 H, 2 CH3), 1.29-1.34
(m, 2 H, CH2), 1.42 and 1.53 (2 s, 2 × 3
H, 2 CH3), 1.79-1.83 (m, 1 H), 3.66-3.72
(m, 1 H) ppm.
1-Cyclohexyl-2-nitropropan-1-ol
(3g)
The aqueous workup gave 3g as
a 40:60 mixture of syn/anti isomers. ¹H
NMR (400 MHz, CDCl3): 1.18-1.25 (m, 6 × 2 H,
6 CH2, syn + anti), 1.52-1.56 (m, 2 × 3
H, 2 CH3, syn + anti), 1.66-1.78 (m, 4 × 2
H, 2 × 1 H, 4 CH2, 2 CH, syn + anti), 3.67 (dd, J = 4.4,
7.3 Hz, 1 H, H-2, syn), 3.94 (dd, J = 3.3, 8.2
Hz, 1 H, H-2, anti), 4.60-4.76
(m, 2 H, H-1, syn + anti) ppm.
<A NAME="RD02012ST-13">13</A>
Physical Data
of 1,2:3,4-Di-
O
-isopropylidene-6-(
R
)-(2,2-dimethyl-5-nitro-1,3-dioxan-5-yl)-β-
d
-galacto-heptopyranose
(3h)
After aqueous workup and column chromatography (EtOAc-hexane = 1:2) 3h was obtained as a colorless oil (70%). ¹H
NMR (300 MHz, CDCl3): δ = 1.33, 1.35,
1.36, 1.45, 1.46 and 1.59 (6 s, 6 × 3H,
CH3), 3.16 (d, 1 H, J = 7.1 Hz,
OH), 3.92 (dd, 1 H, J = 8.9,
1.9 Hz), 4.03-4.37 (m, 5 H), 4.52-4.71 (m, 3 H),
5.50 (d, 1 H, J = 5.1
Hz, H-1) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 19.5,
24.3, 25.6, 25.8 and 27.3 (6 × CH3),
61.1 and 62.7 (2 × CH2), 66.6,
70.0, 70.5, 70.6 and 70.8 (5 × CH), 89.9
(CH), 96.1, 98.9, 109.1 and 109.6 (4 × C)
ppm.
<A NAME="RD02012ST-14A">14a</A>
Felkin H.
Prudent N.
Tetrahedron
Lett.
1968,
9:
2199
<A NAME="RD02012ST-14B">14b</A>
Anh NT.
Eisenstein O.
Lefour J.-M.
Dau M.-E.
J.
Am. Chem. Soc.
1973,
95:
6146
<A NAME="RD02012ST-14C">14c</A>
Anh NT.
Eisenstein O.
Nouv.
J. Chim.
1977,
1:
61