Abstract
We have discovered that several platinum- or gold-catalyzed cycloisomerization
reactions can also be catalyzed by copper. This Account discusses
our new findings, the complementarity of copper-catalysis, and its
application to the synthesis of (-)-cubebol, (-)-β-santalol,
and other fragrance compounds.
1 Introduction
2 Cycloisomerization of 5-en-1-yn-3-ols: The Cyclopropanation
Pathway
3 Cycloisomerization of 5-En-1-yn-3-ol-Derived Esters and Synthesis
of (-)-Cubebol
4 Cycloisomerization of a 6-En-1-yn-3-ol and Its Corresponding
Acetate towards the Synthesis of Thujopsanone-Like Compounds
5 Cyclization-Fragmentations of 5-En-1-yn-3-ols
6 Synthesis of (-)-β-Santalol by Cyclization-Fragmentation of
a 5-En-1-yn-3-ol
7 Reactivity of 6-En-1-yn-4-ols: Cyclization-Fragmentation vs.
Metathesis Reaction
8 Conclusions and Outlook
Key words
copper catalysis - cycloisomerizations - fragrances - alkynes - gold catalysis
References and Notes
Recent reviews on enyne cycloisomerizations:
<A NAME="RA62311ST-1A">1a</A>
Nolan SP.
Acc. Chem. Res.
2011,
44:
91
<A NAME="RA62311ST-1B">1b</A>
Echavarren AM.
Jiménez-Nunez E.
Top.
Catal.
2010,
53:
924
<A NAME="RA62311ST-1C">1c</A>
Fürstner A.
Chem. Soc. Rev.
2009,
38:
3208
<A NAME="RA62311ST-1D">1d</A>
Shen HC.
Tetrahedron
2008,
64:
7847
<A NAME="RA62311ST-1E">1e</A>
Jiménez-Nunez E.
Echavarren AM.
Chem.
Rev.
2008,
108:
3326
<A NAME="RA62311ST-1F">1f</A>
Michelet V.
Toullec PY.
Genêt J.-P.
Angew. Chem. Int. Ed.
2008,
47:
4268
<A NAME="RA62311ST-1G">1g</A>
Crone B.
Kirsch SF.
Chem. Eur. J.
2008,
14:
3514
<A NAME="RA62311ST-1H">1h</A>
Fürstner A.
Davies PW.
Angew.
Chem. Int. Ed.
2007,
46:
3410
<A NAME="RA62311ST-1I">1i</A>
Jiménez-Nunez E.
Echavarren AM.
Chem.
Commun.
2007,
333
<A NAME="RA62311ST-1J">1j</A>
Gorin D.
Toste JD.
Nature (London)
2007,
446:
395
<A NAME="RA62311ST-1K">1k</A>
Marion N.
Nolan SP.
Angew. Chem. Int. Ed.
2007,
46:
2750
<A NAME="RA62311ST-1L">1l</A>
Marco-Contelles J.
Soriano E.
Chem. Eur.
J.
2007,
13:
1350
<A NAME="RA62311ST-1M">1m</A>
Zhang L.
Sun J.
Kozmin SA.
Adv. Synth.
Catal.
2006,
348:
2271
<A NAME="RA62311ST-2A">2a</A>
Blaszykowski C.
Harrak Y.
Brancour C.
Nakama K.
Dhimane A.-L.
Fensterbank L.
Malacria M.
Synthesis
2007,
2037
<A NAME="RA62311ST-2B">2b</A>
Soriano E.
Marco-Contelles J.
J. Org. Chem.
2007,
72:
2651
<A NAME="RA62311ST-2C">2c</A> Pt and Cu:
Barluenga J.
Riesgo L.
Vicente R.
Lopez LA.
Tomas M.
J. Am. Chem. Soc.
2007,
129:
7772
<A NAME="RA62311ST-2D">2d</A>
Anjum S.
Marco-Contelles J.
Tetrahedron
2005,
61:
4793
<A NAME="RA62311ST-2E">2e</A>
Soriano E.
Ballesteros P.
Marco-Contelles J.
Organometallics
2005,
24:
3182
<A NAME="RA62311ST-2F">2f</A>
Soriano E.
Marco-Contelles J.
J. Org. Chem.
2005,
70:
9345
<A NAME="RA62311ST-2G">2g</A>
Blaszykowski C.
Harrak Y.
Gonçalves M.-H.
Cloarec J.-M.
Dhimane A.-L.
Fensterbank L.
Malacria M.
Org.
Lett.
2004,
6:
3771
<A NAME="RA62311ST-2H">2h</A>
Harrak Y.
Blaszykowski C.
Bernard M.
Cariou K.
Mainetti E.
Mouriès V.
Dhimane A.-L.
Fensterbank L.
Malacria M.
J.
Am. Chem. Soc.
2004,
126:
8656
<A NAME="RA62311ST-2I">2i</A>
Mamane V.
Gress T.
Krause H.
Fürstner A.
J. Am. Chem. Soc.
2004,
126:
8654
<A NAME="RA62311ST-3A">3a</A>
Garayalde D.
Krüger K.
Nevado C.
Angew. Chem. Int. Ed.
2011,
50:
911
<A NAME="RA62311ST-3B">3b</A>
Harrak Y.
Makhlouf M.
Azzaro S.
Mainetti E.
Romero JML.
Cariou K.
Gandon V.
Goddard J.-P.
Malacria M.
Fensterbank L.
J. Organomet. Chem.
2011,
696:
388
<A NAME="RA62311ST-3C">3c</A>
Marion N.
Lemière G.
Correa A.
Costabile C.
Ramon RS.
Moreau X.
de Frémont P.
Dahmane R.
Hours A.
Lesage D.
Tabet J.-C.
Goddard J.-P.
Gandon V.
Cavallo L.
Fensterbank L.
Malacria M.
Nolan SP.
Chem.
Eur. J.
2009,
15:
3243
<A NAME="RA62311ST-3D">3d</A>
Watson IDG.
Ritter S.
Toste FD.
J. Am. Chem. Soc.
2009,
131:
2056
<A NAME="RA62311ST-3E">3e</A> Au and Pt:
Moreau X.
Goddard J.-P.
Bernard M.
Lemière G.
López-Romero JM.
Mainetti E.
Marion N.
Mouriès V.
Thorimbert S.
Fensterbank L.
Malacria M.
Adv. Synth. Catal.
2008,
350:
43
<A NAME="RA62311ST-3F">3f</A>
Fürstner A.
Schlecker A.
Chem.
Eur. J.
2008,
14:
9181
<A NAME="RA62311ST-3G">3g</A>
Correa A.
Marion N.
Fensterbank L.
Malacria M.
Nolan SP.
Cavallo L.
Angew. Chem. Int. Ed.
2008,
47:
718
<A NAME="RA62311ST-3H">3h</A>
Lemière G.
Gandon V.
Cariou K.
Fukuyama T.
Dhimane A.-L.
Fensterbank L.
Malacria M.
Org. Lett.
2007,
9:
2207
<A NAME="RA62311ST-3I">3i</A> Au and Pt:
Fürstner A.
Hannen P.
Chem. Eur.
J.
2006,
12:
3006
<A NAME="RA62311ST-3J">3j</A>
Buzas A.
Gagosz F.
J. Am. Chem. Soc.
2006,
128:
12614
<A NAME="RA62311ST-3K">3k</A>
Cho EJ.
Kim M.
Lee D.
Org.
Lett.
2006,
8:
5413
<A NAME="RA62311ST-3L">3l</A>
Johansson MJ.
Gorin DJ.
Staben ST.
Toste FD.
J.
Am. Chem. Soc.
2005,
127:
18002
<A NAME="RA62311ST-3M">3m</A>
Gagosz F.
Org.
Lett.
2005,
7:
4129
<A NAME="RA62311ST-3N">3n</A>
Luzung MR.
Markham JP.
Toste FD.
J. Am. Chem. Soc.
2004,
126:
10858
<A NAME="RA62311ST-3O">3o</A> See also:
Grisé CM.
Rodrigue EM.
Barriault L.
Tetrahedron
2008,
64:
797
<A NAME="RA62311ST-3P">3p</A> For the seminal work on
the development of [(PR3)AuNTf2] catalysts,
see:
Mézailles N.
Richard L.
Gagosz F.
Org. Lett.
2005,
7:
4133
<A NAME="RA62311ST-4">4</A>
Fehr C.
Farris I.
Sommer H.
Org. Lett.
2006,
8:
1839
<A NAME="RA62311ST-5A">5a</A>
Fehr C.
Galindo J.
Angew.
Chem. Int. Ed.
2006,
45:
2901
<A NAME="RA62311ST-5B">5b</A>
Fehr C.
Winter B.
Magpantay I.
Chem.
Eur. J.
2009,
15:
9773
<A NAME="RA62311ST-6">6</A>
Fehr C.
Farris I.
Angew. Chem. Int. Ed.
2006,
45:
6904
<A NAME="RA62311ST-7">7</A>
Chabardes P.
Tetrahedron
Lett.
1988,
29:
6253
<A NAME="RA62311ST-8">8</A>
Ohloff G.
Strickler H.
Willhalm B.
Borer C.
Hinder M.
Helv.
Chim. Acta
1970,
53:
623
<A NAME="RA62311ST-9">9</A>
Hatsui T.
Suzuki N.
Takeshita H.
Chem.
Lett.
1985,
639
<A NAME="RA62311ST-10">10</A>
Fehr C.
Vuagnoux M.
Buzas A.
Arpagaus J.
Sommer H.
Chem.
Eur. J.
2011,
17:
6214
<A NAME="RA62311ST-11">11</A> For the preparation of [(IPr)CuNTf2] [kindly
obtained by Professor Steven P. Nolan (University of St. Andrews, St.
Andrews, UK)], see:
Fortman GC.
Slawin AMZ.
Nolan SP.
Organometallics
2010,
29:
3966
<A NAME="RA62311ST-12A">12a</A>
Luzung MR.
Mauleon P.
Toste FD.
J. Am. Chem. Soc.
2007,
129:
12402
<A NAME="RA62311ST-12B">12b</A>
Alcaide B.
Almendros P.
Aragoncillo C.
Chem.
Soc. Rev.
2010,
39:
783
<A NAME="RA62311ST-13">13</A>
Saucy G.
Marbet R.
Lindlar H.
Isler O.
Helv. Chim. Acta
1959,
42:
1945
<A NAME="RA62311ST-14">14</A>
Vedejs E.
Cammers-Goodwin A.
J. Org. Chem.
1994,
59:
7541
<A NAME="RA62311ST-15">15</A>
Fehr C.
Vuagnoux M.
Sommer H.
Chem.
Eur. J.
2011,
17:
3832
<A NAME="RA62311ST-16">16</A>
Bluthe N.
Goré J.
Malacria M.
Tetrahedron
1986,
42:
1333
<A NAME="RA62311ST-17">17</A>
Shapiro ND.
Toste FD.
Synlett
2010,
675
(-)-β-Santalol
(very strong sandalwood odor) and (+)-β-santalol
(odorless) by chiral auxiliary-based synthesis:
<A NAME="RA62311ST-18A">18a</A>
Krotz A.
Helmchen G.
Liebigs Ann. Chem.
1994,
601
<A NAME="RA62311ST-18B">18b</A>
Krotz A.
Helmchen G.
Tetrahedron: Asymmetry
1990,
1:
537
(±)-β-santalol:
<A NAME="RA62311ST-18C">18c</A>
Solas D.
Wolinsky J.
J. Org. Chem.
1983,
48:
1988
<A NAME="RA62311ST-18D">18d</A>
Monti H.
Corriol C.
Bertrand M.
Tetrahedron
Lett.
1982,
23:
5539
<A NAME="RA62311ST-18E">18e</A>
Sato K.
Miyamoto O.
Inoue S.
Honda K.
Chem. Lett.
1981,
1183
<A NAME="RA62311ST-18F">18f</A>
Christensen PA.
Willis BJ.
J.
Org. Chem.
1979,
44:
2012
<A NAME="RA62311ST-18G">18g</A>
Kretschmar HC.
Erman WF.
Tetrahedron
Lett.
1970,
11:
41
<A NAME="RA62311ST-19">19</A>
Fehr C, and
Vuagnoux M. inventors; WO 200914178.
<A NAME="RA62311ST-20">20</A>
Baumann M, and
Hoffmann W. inventors; EP 0010213. For a long synthesis of (±)-83 (8 steps, 13% yield) of unspecified
configuration and lacking spectral data, see:
; Chem. Abstr. 1980, 93, 185844
<A NAME="RA62311ST-21">21</A>
Corey EJ.
Yamamoto H.
J. Am. Chem. Soc.
1970,
92:
226
<A NAME="RA62311ST-22">22</A>
Fehr C.
Magpantay I.
Arpagaus J.
Marquet X.
Vuagnoux M.
Angew.
Chem. Int. Ed.
2009,
48:
7221
<A NAME="RA62311ST-23">23</A>
Hayashi Y.
Samanta S.
Gotoh H.
Ishikawa H.
Angew. Chem. Int. Ed.
2008,
47:
6634
<A NAME="RA62311ST-24">24</A>
Surprisingly, 90 and
to a larger extent 91 showed a diminished
ee as compared to 88 and 89,
although the dr remained the same. Possibly, 90 and 91 undergo a thermal 1,2-H shift.
<A NAME="RA62311ST-25">25</A>
Fehr C.
Magpantay I.
Vuagnoux M.
Dupau P.
Chem. Eur. J.
2011,
17:
1257
<A NAME="RA62311ST-26">26</A>
Migration of the cyclopropane C-C
bond opposite to the C-C=M bond in 99b (Scheme
[²7]
) and 105b (Scheme
[²8]
) leads to the same metathesis
product. These reactions proceed via nonclassical cations, but for
clarity we prefer not to draw partial bonds.
For a related early study of Pt-catalyzed
metathesis reactions leading to bridged bicyclic systems, see:
<A NAME="RA62311ST-27A">27a</A>
Fürstner A.
Stelzer F.
Szillat H.
J. Am. Chem. Soc.
2001,
123:
11863
<A NAME="RA62311ST-27B">27b</A>
Fürstner A.
Szillat H.
Gabor B.
Mynott R.
J. Am. Chem.
Soc.
1998,
120:
8305
<A NAME="RA62311ST-28">28</A>
Kindly performed by Professor M. Santelli
(University of Aix-Marseille, France).
<A NAME="RA62311ST-29">29</A> Note added in proof:
Gronnier C.
Kramer S.
Odabachian Y.
Gagosz F.
J. Am. Chem.
Soc.
2012,
134:
828
For the use of Cu(I) in other types
of reactions based on acetylene activation, see:
<A NAME="RA62311ST-30A">30a</A>
Dudnik AS.
Chernyak N.
Gevorgyan V.
Aldrichimica Acta
2010,
43:
37
<A NAME="RA62311ST-30B">30b</A>
Schwier T.
Sromek AW.
Yap DML.
Chernyak D.
Gevorgyan V.
J. Am. Chem. Soc.
2007,
129:
9868
<A NAME="RA62311ST-30C">30c</A>
Montel S.
Bouyssi D.
Balme G.
Adv.
Synth. Catal.
2010,
352:
2315