Anästhesiol Intensivmed Notfallmed Schmerzther 2012; 47(1): 40-49
DOI: 10.1055/s-0032-1301380
Fachwissen
Anästhesie & Intensivmedizin Topthema: Der erhöhte intrakranielle Druck
© Georg Thieme Verlag Stuttgart · New York

Der erhöhte intrakranielle Druck – Multimodales Neuromonitoring – Indikationen und Methoden

Multimodal neuromonitoring – indications and methodes
Stefan Wolf
,
Farid Salih
,
Christoph Rosenthal
Further Information

Publication History

Publication Date:
27 January 2012 (online)

Zusammenfassung

Die Behandlung von Patienten mit schwerem Schädelhirntrauma und aneurysmatischer Subarachnoidalblutung zählt zu den anspruchsvollsten Aufgaben der Intensivmedizin. Die Mehrzahl der Patienten benötigt eine Analgosedierung zur Beatmung bei respiratorischem Versagen oder zur Behandlung eines erhöhten intrakraniellen Drucks. Neben der standardgemäßen ICP-Messung existierten mehrere weitere kontinuierliche apparative Überwachungsverfahren am Krankenbett. Der Beitrag diskutiert die 5 gebräuchlichsten Methoden und beleuchtet deren Stellenwert im multimodalen Neuromonitoring.

Abstract:

Managing patients after severe traumatic brain injury and aneurysmal subarachnoid hemorrhage is a challenging task of modern intensive care. Most patients do require sedation for mechanical ventilation due to respiratory distress or treatment of increased intracranial pressure. Besides standard ICP monitoring, a variety of continuous monitoring technologies for bedside use exists. The paper discusses the 5 methods most frequently used and their significance for multimodal neuromonitoring.

Kernaussagen

  • Das multimodale Neuromonitoring ist eine sinnvolle Ergänzung des Standard-ICP-Monitorings nach Schädelhirntrauma und aneurysmatischer Subarachnoidalblutung.

  • An Verfahren werden derzeit v. a. direkte zerebrale Blutflussmessung (CBF-Messung), Gewebeoxymetrie, zerebrale Mikrodialyse, Nahinfrarotspektroskopie, EEG und die Bestimmung des Status der zerebralen Autoregulation diskutiert.

  • Die radiologische Bildgebung mit Nativ- und Perfusions-CT dient zur Überprüfung der korrekten Lage nach Implantation einer Mikrosonde ins Gehirn.

  • Die besten Hinweise für eine Verbesserung des neurologischen Behandlungsergebnisses gibt es für die Gewebeoxymetrie. Hier sollte ein Sauerstoffparitaldruck im Hirngewebe (pbrO2 ) von 15–20 mmHg nicht unterschritten werden.

  • Der Status der zerebralen Autoregulation kann über den Pressure Reactivity Index (PRx) bestimmt werden und korreliert signifikant und unabhängig von anderen Faktoren mit dem neurologischen Behandlungsergebnis.

  • Ein einfaches 1- oder 2-Kanal-EEG ermöglicht die Steuerung der Sedierungstiefe bei beatmeten Patienten.

  • Die direkte CBF-Messung mittels Thermodiffusion und die zerebrale Mikrodialyse sind Verfahren mit hohem wissenschaftlichem Potenzial. Für das Routinemonitoring sind sie aufgrund der derzeitigen Datenlage nur eingeschränkt zu empfehlen.

  • Der Einsatz der Nahinfrarotspektroskopie in der neurologischen Intensivmedizin ist bisher noch unzureichend validiert.

  • Bei allen Methoden ist der Einsatz von externer Software und Rechnerunterstützung zur Datenvisualisierung sinnvoll.

Ergänzendes Material

 
  • Literatur

  • 1 Juul N, Morris GF, Marshall SB, Marshall LF. Intracranial hypertension and cerebral perfusion pressure: influence on neurological deterioration and outcome in severe head injury. The Executive Committee of the International Selfotel Trial. J Neurosurg 2000; 92: 1-6
  • 2 Güresir E, Raabe A, Setzer M et al. Decompressive hemicraniectomy in subarachnoid haemorrhage: the influence of infarction, haemorrhage and brain swelling. J Neurol Neurosurg Psychiatr 2009; 80: 799-801
  • 3 Coles JP, Fryer TD, Coleman MR et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med 2007; 35: 568-578
  • 4 Cooper DJ, Rosenfeld JV, Murray L et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med 2011; 364: 1493-1502
  • 5 Zauner A, Daugherty WP, Bullock MR, Warner DS. Brain oxygenation and energy metabolism: part I – biological function and pathophysiology. Neurosurgery discussion 2002; 51
  • 6 Spiotta AM, Provencio JJ, Rasmussen PA, Manno E. Brain monitoring after subarachnoid hemorrhage: lessons learned. Neurosurgery discussion 2011; 69
  • 7 Engström M, Polito A, Reinstrup P et al. Intracerebral microdialysis in severe brain trauma: the importance of catheter location. J Neurosurg 2005; 102: 460-469
  • 8 Vajkoczy P, Horn P, Thome C et al. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg 2003; 98: 1227-1234
  • 9 Wolf S, Kuckertz N, Bauer M et al. Qualitative aspects of cranial CT perfusion scanning in a mixed neurosurgical patient collective. Acta Neurochir Suppl 2008; 102: 253-257
  • 10 Vajkoczy P, Roth H, Horn P et al. Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg 2000; 93: 265-274
  • 11 Muench E, Bauhuf C, Roth H et al. Effects of positive end-expiratory pressure on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation. Crit Care Med 2005; 33: 2367-2372
  • 12 Rosenthal G, Sanchez-Mejia RO, Phan N et al. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury. J Neurosurg 2011; 114: 62-70
  • 13 Muench E, Horn P, Bauhuf C et al. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit Care Med quiz 2007; 35
  • 14 Wolf S, Martin H, Landscheidt JF et al. Continuous selective intraarterial infusion of nimodipine for therapy of refractory cerebral vasospasm. Neurocrit Care 2010; 12: 346-351
  • 15 Musahl C, Henkes H, Vajda Z et al. Continuous local intra-arterial nimodipine administration in severe symptomatic vasospasm after subarachnoid hemorrhage. Neurosurgery discussion 2011; 68
  • 16 Wolf S, Vajkoczy P, Dengler J et al. Drift of the Bowman Hemedex® cerebral blood flow monitor between calibration cycles. Acta Neurochirurgica Suppl [im Druck] 2012; 114
  • 17 Kiening KL, Unterberg AW, Bardt TF et al. Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue PO2 versus jugular vein oxygen saturation. J Neurosurg 1996; 85: 751-757
  • 18 Huschak G, Hoell T, Hohaus C et al. Clinical evaluation of a new multiparameter neuromonitoring device: measurement of brain tissue oxygen, brain temperature, and intracranial pressure. J Neurosurg Anesthesiol 2009; 21: 155-160
  • 19 Dengler J, Frenzel C, Vajkoczy P et al. Cerebral tissue oxygenation measured by two different probes: challenges and interpretation. Intensive Care Med 2011; 37: 1809-1815
  • 20 Purins K, Enblad P, Sandhagen B, Lewén A. Brain tissue oxygen monitoring: a study of in vitro accuracy and stability of Neurovent-PTO and Licox sensors. Acta Neurochir 2010; 152: 681-688
  • 21 Hemphill JC, Knudson MM, Derugin N et al. Carbon dioxide reactivity and pressure autoregulation of brain tissue oxygen. Neurosurgery discussion 2001; 48: 383-384
  • 22 Jaeger M, Soehle M, Schuhmann MU et al. Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir discussion 2005; 147
  • 23 Rosenthal G, Hemphill 3rd JC, Sorani M et al. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med 2008; 36: 1917-1924
  • 24 Figaji AA, Zwane E, Graham FieggenA et al. The effect of increased inspired fraction of oxygen on brain tissue oxygen tension in children with severe traumatic brain injury. Neurocrit Care 2010; 12: 430-437
  • 25 Pennings FA, Schuurman PR, van den Munckhof P, Bouma GJ. Brain tissue oxygen pressure monitoring in awake patients during functional neurosurgery: the assessment of normal values. J Neurotrauma 2008; 25: 1173-1177
  • 26 van Santbrink H, Maas AI, Avezaat CJ. Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury. Neurosurgery 1996; 38: 21-31
  • 27 Dings J, Meixensberger J, Jäger A, Roosen K. Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery 1998; 43: 1082-1095
  • 28 Chang JJJ, Youn TS, Benson D et al. Physiologic and functional outcome correlates of brain tissue hypoxia in traumatic brain injury. Crit Care Med 2009; 37: 283-290
  • 29 Chen HI, Stiefel MF, Oddo M et al. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery discussion 2011; 69
  • 30 Oddo M, Levine JM, Mackenzie L et al. Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independently of intracranial hypertension and low cerebral perfusion pressure. Neurosurgery discussion 2011; 69
  • 31 Spiotta AM, Stiefel MF, Gracias VH et al. Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury. J Neurosurg 2010; 113: 571-580
  • 32 Figaji AA, Zwane E, Kogels M et al. The effect of blood transfusion on brain oxygenation in children with severe traumatic brain injury. Pediatr Crit Care Med 2010; 11: 325-331
  • 33 Pascual JL, Georgoff P, Maloney-Wilensky E et al. Reduced brain tissue oxygen in traumatic brain injury: are most commonly used interventions successful?. J Trauma 2011; 70: 535-546
  • 34 Nangunoori R, Maloney-Wilensky E, Stiefel M et al. Brain tissue oxygen-based therapy and outcome after severe traumatic brain injury: a systematic literature review. Neurocritical Care [Epub ahead of print] 2011;
  • 35 Martini RP, Deem S, Yanez ND et al. Management guided by brain tissue oxygen monitoring and outcome following severe traumatic brain injury. J Neurosurg 2009; 111: 644-649
  • 36 Bratton SL, Chestnut RM, Ghajar J et al. Guidelines for the management of severe traumatic brain injury. X. Brain oxygen monitoring and thresholds. J Neurotrauma 2009; 37 (Suppl. 01) 65-70
  • 37 Diringer MN, Bleck TP, Claude 3rd HemphillJ et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society's Multidisciplinary Consensus Conference. Neurocrit Care 2011; 15: 211-240
  • 38 Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 2005; 22: 3-41
  • 39 Unterberg AW, Sakowitz OW, Sarrafzadeh AS et al. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg 2001; 94: 740-749
  • 40 Skjøth-Rasmussen J, Schulz M, Kristensen SR, Bjerre P. Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 2004; 100: 8-15
  • 41 Goodman JC, Valadka AB, Gopinath SP et al. Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. Crit Care Med 1999; 27: 1965-1973
  • 42 Hillered L, Persson L, Nilsson P et al. Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care 2006; 12: 112-118
  • 43 Vespa PM, McArthur D, O'Phelan K et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab 2003; 23: 865-877
  • 44 Schlenk F, Graetz D, Nagel A et al. Insulin-related decrease in cerebral glucose despite normoglycemia in aneurysmal subarachnoid hemorrhage. Crit Care 2008; 12
  • 45 Schlenk F, Nagel A, Graetz D, Sarrafzadeh AS. Hyperglycemia and cerebral glucose in aneurysmal subarachnoid hemorrhage. Intensive Care Med 2008; 34: 1200-1207
  • 46 van den Berghe G, Wouters P, Weekers F et al. Intensive insulin therapy in the critically ill patients. N Engl J Med 2001; 345: 1359-1367
  • 47 Oddo M, Schmidt JM, Carrera E et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med 2008; 36: 3233-3238
  • 48 Treggiari MM, Karir V, Yanez ND et al. Intensive insulin therapy and mortality in critically ill patients. Crit Care 2008; 12
  • 49 Hopwood SE, Parkin MC, Bezzina EL et al. Transient changes in cortical glucose and lactate levels associated with peri-infarct depolarisations, studied with rapid-sampling microdialysis. J Cereb Blood Flow Metab 2005; 25: 391-401
  • 50 Dreier JP, Major S, Manning A et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain 2009; 132: 1866-1881
  • 51 Hartings JA, Bullock MR, Okonkwo DO et al. Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study. Lancet Neurol 2011; 10: 1058-1064
  • 52 Hutchinson PJ, O'Connell MT, Rothwell NJ et al. Inflammation in human brain injury: intracerebral concentrations of IL-1alpha, IL-1beta, and their endogenous inhibitor IL-1ra. J Neurotrauma 2007; 24: 1545-1557
  • 53 Sarrafzadeh A, Schlenk F, Gericke C, Vajkoczy P. Relevance of cerebral interleukin-6 after aneurysmal subarachnoid hemorrhage. Neurocrit Care 2010; 13: 339-346
  • 54 Bellander B-M, Cantais E, Enblad P et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med 2004; 30: 2166-2169
  • 55 Andrews PJD, Citerio G, Longhi L et al. NICEM consensus on neurological monitoring in acute neurological disease. Intensive Care Med 2008; 34: 1362-1370
  • 56 Calderon-Arnulphi M, Alaraj A, Slavin KV. Near infrared technology in neuroscience: past, present and future. Neurol Res 2009; 31: 605-614
  • 57 Haitsma IK, Maas AIR. Monitoring cerebral oxygenation in traumatic brain injury. Prog Brain Res 2007; 161: 207-216
  • 58 Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 2009; (Suppl. 01) 103: 3-13
  • 59 Heringlake M, Garbers C, Käbler J-H et al. Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology 2011; 114: 58-69
  • 60 Murkin JM, Adams SJ, Novick RJ et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg 2007; 104: 51-58
  • 61 Schwarz G, Litscher G, Kleinert R, Jobstmann R. Cerebral oximetry in dead subjects. J Neurosurg Anesthesiol 1996; 8: 189-193
  • 62 Kyttä J, Ohman J, Tanskanen P, Randell T. Extracranial contribution to cerebral oximetry in brain dead patients: a report of six cases. J Neurosurg Anesthesiol 1999; 11: 252-254
  • 63 Abend NS, Dlugos DJ, Hahn CD et al. Use of EEG monitoring and management of non-convulsive seizures in critically ill patients: a survey of neurologists. Neurocritical Care 2010; 12: 382-389
  • 64 Bratton SL, Chestnut RM, Ghajar J et al. Guidelines for the management of severe traumatic brain injury. XI. Anesthetics, analgesics, and sedatives. J Neurotrauma 2007; 24 (Suppl. 01) 71-76
  • 65 Cottenceau V, Petit L, Masson F et al. The use of bispectral index to monitor barbiturate coma in severely brain-injured patients with refractory intracranial hypertension. Anesth Analg 2008; 107: 1676-1682
  • 66 Vespa PM, Nuwer MR, Juhász C et al. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol 1997; 103: 607-615
  • 67 Hänggi D. Monitoring and detection of vasospasm II: EEG and invasive monitoring. Neurocrit Care 2011; 15: 318-323
  • 68 Vespa P. Continuous EEG monitoring for the detection of seizures in traumatic brain injury, infarction, and intracerebral hemorrhage: “to detect and protect.”. J Clin Neurophysiol 2005; 22: 99-106
  • 69 Vespa PM, Miller C, McArthur D et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med 2007; 35: 2830-2836
  • 70 Cloostermans MC, de Vos CC, van Putten MJAM. A novel approach for computer assisted EEG monitoring in the adult ICU. Clin Neurophysiol 2011; 122: 2100-2109
  • 71 Lang EW, Mehdorn HM, Dorsch NWC, Czosnyka M. Continuous monitoring of cerebrovascular autoregulation: a validation study. J Neurol Neurosurg Psychiatr 2002; 72: 583-586
  • 72 Czosnyka M, Smielewski P, Kirkpatrick P et al. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery discussion 1997; 41: 17-19
  • 73 Timofeev I, Carpenter KLH, Nortje J et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 2011; 134: 484-494
  • 74 Steiner LA, Czosnyka M, Piechnik SK et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 2002; 30: 733-738
  • 75 Zweifel C, Castellani G, Czosnyka M et al. Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J Neurotrauma 2010; 27: 1951-1958
  • 76 Barth M, Woitzik J, Weiss C et al. Correlation of clinical outcome with pressure-, oxygen-, and flow-related indices of cerebrovascular reactivity in patients following aneurysmal SAH. Neurocrit Care 2010; 12: 234-243
  • 77 Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med 2006; 34: 1783-1788
  • 78 Jaeger M, Schuhmann MU, Soehle M et al. Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction. Stroke 2007; 38: 981-986
  • 79 Zweifel C, Castellani G, Czosnyka M et al. Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke 2010; 41: 1963-1968
  • 80 Hemphill JC, Andrews P, De Georgia M. Multimodal monitoring and neurocritical care bioinformatics. Nat Rev Neurol 2011; 7: 451-460
  • 81 MRC CRASH Trial Collaborators. Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. BMJ 2008; 336: 425-429
  • 82 Maas AIR, Marmarou A, Murray GD et al. Prognosis and clinical trial design in traumatic brain injury: the IMPACT study. J Neurotrauma 2007; 24: 232-238
  • 83 CRASH Datenbank. http://www.crash.lshtm.ac.uk/Risk calculator/index.html
  • 84 Project Impact. http://www.tbi-impact.org/?p=impact/calc