Deutsche Zeitschrift für Onkologie 2013; 45(1): 4-13
DOI: 10.1055/s-0032-1314755
Forschung
© Karl F. Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Senfölbombe der Kreuzblütler – pflanzlicher Verteidigungsmechanismus mit therapeutischer Wirkung

Ingrid Herr
1   Molekulare OnkoChirurgie, Universitätsklinikum Heidelberg und Deutsches Krebsforschungszentrum Heidelberg
2   Allgemein, Viszeral & Transplantationschirurgie, Universität Heidelberg
,
Vanessa Rausch
1   Molekulare OnkoChirurgie, Universitätsklinikum Heidelberg und Deutsches Krebsforschungszentrum Heidelberg
2   Allgemein, Viszeral & Transplantationschirurgie, Universität Heidelberg
,
Markus W. Büchler
2   Allgemein, Viszeral & Transplantationschirurgie, Universität Heidelberg
› Author Affiliations
Further Information

Publication History

Publication Date:
25 March 2013 (online)

Zusammenfassung

Die „Senfölbombe“ ist der allseits bekannte Scharfmacher von Senf und Meerrettich, kommt aber auch als würzig oder bitter schmeckende Variante in Kohl, Rettich, Raps, Kresse und Rucola vor. Dieses Abwehrsystem schützt Pflanzen der Kreuzblütlerfamilie vor Raupen, Heuschrecken, Pilzen, Bakterien und Viren. Es ist ein chemisches Prinzip, das aus dem Enzym Myrosinase und dem inaktiven Glukosinolat besteht. Wird die Pflanzenzelle angefressen, explodiert die „Bombe“: Die Myrosinase spaltet das Glukosinolat und das hoch wirksame Senföl entsteht. Über 120 verschiedene Senföle existieren, die nicht nur die Pflanze selbst behüten, sondern dem Menschen seit der Antike als Heilmittel gegen Bakterien, Viren, Pilze, Entzündungen und sogar Krebs dienen. Inzwischen belegen zahlreiche experimentelle Untersuchungen und Ernährungsstudien die therapeutische Wirksamkeit der Kreuzblütler und ihrer Inhaltsstoffe beim Menschen. Besonders gut untersucht ist das Senföl Sulforaphan, das in hoher Konzentration in Brokkoli und seinen Sprossen vorkommt. In mehreren renommierten amerikanischen Krankenhäusern sind nun erste klinische Studien über die begleitende Behandlung von Krebspatienten mit Brokkolisprossen angelaufen, deren Ergebnisse mit Spannung erwartet werden. Der vorliegende Artikel gibt eine Übersicht über die Kreuzblütlerfamilie mit Bezug zu Botanik, Naturheilkunde, Ernährung, molekularen Wirkmechanismen und therapeutischer Verwendung.

Summary

The so called „mustard oil bomb“ is well known to turn up the heat upon mustard or horseradish consumption but is also responsible for the spicy or bitter taste of cabbage, radish, rape, cress and rucola. This defense system protects plants of the cruciferous family against caterpillars, grasshopers, fungi, bacteria and viruses. It is a chemical principle composed of the enzyme myrosinase and the inactive glucosinolate. Upon damage of the plant cell the „bomb“ explodes: The myrosinase cleaves the glucosinolate and the highly effective mustard oil arises. More than 120 different mustard oils exist, which do not only protect the plant itself, but also serve as remedies against bacteria, viruses, fungi, inflammation and cancer since the ancient. In the meanwhile, numerous experimental examinations and nutrition studies in humans support the therapeutic efficacy of the crucifers and their ingredients. Particularly well studied is the mustard oil sulforaphane, which is present in high concentration in broccoli and its sprouts. First clinical studies have now been started in several renowned US clinics to examine the effects of broccoli sprouts to treatment of cancer patients and the results are expected to live. The present article gives an insight to the cruciferous family with respect to botany, naturopathy, nutrition, molecular mechanisms of action and therapeutic applications.

 
  • Literatur

  • 1 Bertl E, Bartsch H, Gerhauser C. Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Mol Cancer Ther 2006; 5: 575-575
  • 2 Cato. Marcus Porcius. Über den Ackerbau. (Originalversion etwa 160 v. Chr.) Herausgegeben, übersetzt und erläutert von Dieter Flach. Stuttgart: Franz Steiner; 2005
  • 3 Conaway CC, Getahun SM, Liebes LL et al Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutr Cancer 2000; 38: 168-168
  • 4 Conrad A, Kolberg T, Engels I, Frank U. In-vitro-Untersuchungen zur antibakteriellen Wirksamkeit einer Kombination aus Kapuzinerkressenkraut (Tropaeoli majoris herb a) und Meerrettichwurzel (Armoraciae rusticaneae radix). Arzneimittelforschung 2006; 56: 842-842
  • 5 Cotton SC, Sharp L, Little J, Brockton N. Glutathione S-transferase polymorphisms and colorectal cancer: a HuGE review. Am J Epidemiol 2000; 151: 7-7
  • 6 Egner PA, Chen JG, Wang JB et al Bioavailability of sulforaphane from two broccoli sprout beverages: results of a short-term, cross-over clinical trial in Qidong, China. Cancer Prev Res (Phila) 2011; 4: 384-384
  • 7 Engel E, Baty C, Le Corre D, Souchon I, Martin N. Flavor-active compounds potentially implicated in cooked cauliflower acceptance. J Agric Food Chem 2002; 50: 6459-6459
  • 8 Fahey JW, Talalay P. Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes. Food Chem Toxicol 1999; 37: 973-973
  • 9 Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001; 56: 5-5
  • 10 Fahey JW, Zhang Y, Talalay P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA 1997; 94: 10367-10367
  • 11 Farnham MW, Stephenson KK, Fahey JW. Glucoraphanin level in broccoli seed is largely determined by genotype. HortScience 2005; 40: 50-50
  • 12 Fenwick GR, Heaney RK, Mullin WJ. Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr 1983; 18: 123-123
  • 13 Forman D, Burley V, Cade J et al The associations between food, nutrition and physical activity and the risk of pancreatic cancer and underlying mechanisms. In: Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. Washington DC: World Cancer Research Fund; 2007
  • 14 Griffiths DW, Birch ANE, Hillman JR. Antinutritional compounds in the Brassicaceae: analysis, biosynthesis, chemistry and dietary effects. J Hort Sci Biotech 1998; 73: 1-1
  • 15 Halkier BA, Gershenzon J. Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 2006; 57: 303-303
  • 16 Harries LW, Stubbins MJ, Forman D, Howard GC, Wolf CR. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 1997; 18: 641-641
  • 17 Herr I, Buchler MW. Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 2010; 36: 377-377
  • 18 Juge N, Mithen RF, Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 2007; 64: 1105-1105
  • 19 Kallifatidis G, Labsch S, Rausch V et al Sulforaphane increases drug-mediated cytotoxicity towards cancer stem-like cells of pancreas and prostate. Mol Ther 2011; 19: 188-188
  • 20 Kallifatidis G, Rausch V, Baumann B et al Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut 2009; 58: 949-949
  • 21 Kensler TW, Chen JG, Egner PA et al Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People’s Republic of China. Cancer Epidemiol Biomarkers Prev 2005; 14: 2605-2605
  • 22 Kirsh VA, Peters U, Mayne ST et al Prospective study of fruit and vegetable intake and risk of prostate cancer. J Natl Cancer Inst 2007; 99: 1200-1200
  • 23 Li F, Hullar MA, Beresford SA, Lampe JW. Variation of glucoraphanin metabolism in vivo and ex vivo by human gut bacteria. Br J Nutr 2011; 106: 408-408
  • 24 Li Y, Wicha MS, Schwartz SJ, Sun D. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. J Nutr Biochem 2011; 22: 799-799
  • 25 Li Y, Zhang T, Korkaya H et al Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin Cancer Res 2010; 16: 2580-2580
  • 26 Lopez-Berenguer C, Carvajal M, Moreno DA, Garcia-Viguera C. Effects of microwave cooking conditions on bioactive compounds present in broccoli inflorescences. J Agric Food Chem 2007; 55: 10001-10001
  • 27 Meyer M, Adam ST. Comparison of glucosinolate levels in commercial broccoli and red cabbage from conventional and exological farming. Eur Food Res Technol 2008; 226: 1429-1429
  • 28 Moreno DA, Lopez-Berenguer C, Garcia-Viguera C. Effects of stir-fry cooking with different edible oils on the phytochemical composition of broccoli. J Food Sci 2007; 72: S064-S068
  • 29 Myzak MC, Dashwood RH. Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer Lett 2006; 233: 208-208
  • 30 Pechatschek H. Kohlblatt – Ein großes Geschenk der Natur. 13. Aufl. Steyr: Ennsthaler; 2009
  • 31 Prochazka Z. Isolation of sulforaphane from Hoary Cress. Collection of the Czechoslovak Chemical Communications 1959; 24: 2429-2429
  • 32 Prochazka Z, Komersova I. Isolation of sulforaphane from Cardaria draba and its antimicrobial effect. Ceskoslovenska Farmacie 1959; 8: 373-373
  • 33 Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J. Disarming the mustard oil bomb. Proc Natl Acad Sci USA 2002; 99: 11223-11223
  • 34 Rausch V, Liu L, Kallifatidis G et al Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res 2010; 70: 5004-5004
  • 35 Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J 2008; 22: 659-659
  • 36 Richman EL, Carroll PR, Chan JM. Vegetable and fruit intake after diagnosis and risk of prostate cancer progression. Int J Cancer 2012; 131: 201-201
  • 37 Romanowski F, Klenk H. Thiocyanates and isothiocyanates, organic. Weinheim: Wiley-VCH; 2005
  • 38 Rosa EAS, Heaney RK, Fenwick GR, Portas CAM. Glucosinolates in crop plants. Horticultural Rev 1997; 19: 99-99
  • 39 Rychlik M, Adam ST. Glucosinolate and folate content in sprouted broccoli seeds. Eur Food Res Technol 2008; 226: 1057-1057
  • 40 Sarikamis G, Marquez J, MacCormack R et al High glucosinolate broccoli: a delivery system for sulforaphane. Mol Breeding 2006; 18: 219-219
  • 41 Sasaki K, Neyazaki M, Shindo K, Ogawa T, Momose M. Quantitative profiling of glucosinolates by LC-MS analysis reveals several cultivars of cabbage and kale as promising sources of sulforaphane. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 903: 171-171
  • 42 Schilcher H, Kammerer S, Wegener T. Leitfaden Phytotherapie. 3. Aufl. München: Elsevier/Urban & Fischer; 2007
  • 43 Shapiro TA, Fahey JW, Dinkova-Kostova AT et al Safety, tolerance, and metabolism of broccoli sprout glucosinolates and isothiocyanates: a clinical phase I study. Nutr Cancer 2006; 55: 53-53
  • 44 Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P. Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol Biomarkers Prev 2001; 10: 501-501
  • 45 Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol Biomarkers Prev 1998; 7: 1091-1091
  • 46 Shin IS, Masuda H, Naohide K. Bactericidal activity of wasabi (wasabia japonica) against Helicobacter pylori. Int J Food Microbiol 2004; 94: 255-255
  • 47 Shishu. Singla AK, Kaur IP. Inhibition of mutagenicity of food-derived heterocyclic amines by sulphoraphene – an isothiocyanate isolated from radish. Planta Med 2003; 69: 184-184
  • 48 Silverman DT, Swanson CA, Gridley G et al Dietary and nutritional factors and pancreatic cancer: a case-control study based on direct interviews. J Natl Cancer Inst 1998; 90: 1710-1710
  • 49 Singh SV, Kim SH, Sehrawat A et al Biomarkers of phenethyl isothiocyanate-mediated mammary cancer chemoprevention in a clinically relevant mouse model. J Natl Cancer Inst 2012; 104: 1228-1228
  • 50 Stingl W. Influenza-Viren mit Phytotherapie bekämpfen. Ärzte Zeitung.de 2010; 16.10.2010.
  • 51 Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H, van den Brandt PA. Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev 1996; 5: 733-733
  • 52 Verhoeven DT, Verhagen H, Goldbohm RA, van den Brandt PA, van Poppel G. A review of mechanisms underlying anticarcinogenicity by brassica vegetables. Chem Biol Interact 1997; 103: 79-79
  • 53 Winter AG, Willeke L. Untersuchungen über den Einfluss von Senfölen auf die Vermehrung des Influenza-Virus im exembryonierten Hühnerei. Arch Mikrobiol 1958; 31: 311-311
  • 54 Yanaka A, Fahey JW, Fukumoto A et al Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori-infected mice and humans. Cancer Prev Res (Phila Pa) 2009; 2: 353-353
  • 55 Yuan GF, Sun B, Yuan J, Wang QM. Effects of different cooking methods on health-promoting compounds of broccoli. J Zhejiang Univ Sci B 2009; 10: 580-580
  • 56 Zhang Y, Talalay P, Cho CG, Posner GH. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A 1992; 89: 2399-2399
  • 57 Zhou W, Kallifatidis G, Baumann B et al Dietary polyphenol quercetin targets pancreatic cancer stem cells. Int J Oncol 2010; 37: 551-561