Handchir Mikrochir Plast Chir 2012; 44(04): 240-253
DOI: 10.1055/s-0032-1321891
Übersichtsarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Quo vadis? Brustimplantate – aktuelle Entwicklungen und neue Konzepte

Quo vadis? Breast Implants – Current Trends and New Concepts
I. Sukhova
1   Klinik und Poliklinik für Plastische Chirurgie und Handchirurgie, Klinikum rechts der Isar, Technische Universität München, München
,
D. Müller
1   Klinik und Poliklinik für Plastische Chirurgie und Handchirurgie, Klinikum rechts der Isar, Technische Universität München, München
,
M. Eisenmann-Klein
2   Caritas-Krankenhaus St. Josef, Klinik für Plastische und Ästhetische, Hand- und Wiederherstellungschirurgie, Regensburg
,
H.-G. Machens
1   Klinik und Poliklinik für Plastische Chirurgie und Handchirurgie, Klinikum rechts der Isar, Technische Universität München, München
,
J.-T. Schantz
1   Klinik und Poliklinik für Plastische Chirurgie und Handchirurgie, Klinikum rechts der Isar, Technische Universität München, München
› Author Affiliations
Further Information

Publication History

eingereicht 04 May 2012

akzeptiert 11 July 2012

Publication Date:
29 August 2012 (online)

Zusammenfassung

Hintergrund:

Brustaugmentationen gehören zu den am häufigsten von Plastischen Chirurgen durchgeführten operativen Eingriffen und in der Mehrzahl der Brustrekonstruktionen werden Implantate bis dato verwendet. Der Artikel bietet eine Übersicht über die neuesten Konzepte zur Erhöhung der Biokompatibilität von Brustimplantaten und Reduktion der Kapselkontraktur mit dem Fokus auf Oberflächenmodifikationen und Biomaterialien. Aufgrund der aktuellen Ereignisse die PIP®-Implantate betreffend wird ein kurzer Beitrag dazu ebenfalls präsentiert.

Materialien und Methoden:

Zur Informationsgewinnung wurden die Datenbanken PubMed, Embase und Cochrane Collaboration nach experimentellen und klinischen Studien, sowie Metaanalysen und Reviews durchsucht. Anhand des Titels, des Erscheinungsjahres und der Abstracts wurden thematisch relevante aktuelle Publika­tionen in englischer oder deutscher Sprache ausgewählt und die Volltextartikel studiert.

Ergebnisse:

Seit den 60er Jahren sind je nach Klassifikationssystem 4–5 Generationen von Brustimplantaten erschienen. Veränderungen betrafen unterschiedliche Bereiche. Die Oberflächenbeschaffenheit wurde durch unterschiedliche Texturen sowie die Beschichtung mit Polyurethan oder Titan modifiziert. Einige dieser Veränderungen zeigten zwar einen gewissen Erfolg in der Reduktion der Kapselkontraktur, konnten jedoch dieses Problem bisher nicht ausreichend lösen. In aktuellen experimentellen Studien wurde die Oberfläche meist durch antifibrotische oder antibakterielle Substanzen modifiziert. Für die lokale Freisetzung von der Implantatoberfläche wurden verschiedene Trägermedien verwendet. Auch die Medikamentenapplikation durch eine kovalente Bindung an die Implantatoberfläche oder Oberflächenimprägnierung wurde untersucht. Die Erhöhung der Biokompatibilität durch Biomimikry oder nanotechnologische Veränderung der Biomaterialien stellen weitere Ansätze dar, die zukünftig zur Reduktion der Kapselkontraktur beitragen könnten.

Schlussfolgerung:

Die Entwicklung von Beschichtungen zur kontrollierten lokalen Medikamentenfreisetzung von der Implantatoberfläche könnte zukünftig genutzt werden, um weitere Medikamente zu verabreichen, die in klinischen Studien in oraler Applikation eine Reduktion der Kapselkontraktur bewirkt haben. Damit könnte das Risiko von unerwünschten Arzneimittelwirkungen möglicherweise gesenkt werden. Ungeklärte Fragen zu kontrollierten Drug-Release-Systemen, Langzeitergebnissen sowie möglichen systemischen Nebenwirkungen von Medikamenten in kontinuierlicher lokaler Applikation könnten in weiteren Studien geklärt werden.

Abstract

Background:

Breast augmentation is one of the most frequent surgical procedures performed by plastic surgeons. Furthermore, in the majority of breast reconstructions implants are still in use. With the focus on surface modifications and biomaterials, the article provides an overview of the latest trends and concepts in increase of implant biocompatibility and reduction of capsular contracture. Because of the recent events regarding PIP® implants, a short report on this topic is presented as well.

Materials and Methods:

The literature was searched for experimental and clinical studies, as well as meta-analysis and reviews, using the databases PubMed, Embase and Cochrane Collaboration. Based on the title, year of publication and abstracts, thematically relevant and recent publications in English or German were selected and full text articles were studied.

Results:

According to the classification, 4–5 generations of breast implants have been developed since the 1960s. Modifications affected diverse areas including various surface textures as well as coatings with polyurethane or titanium. Some of these changes were able to reduce capsular contracture, however, without resolving the issue sufficiently. Recent experimental studies mostly evaluated different surface coatings with antifibrotic and antibacterial substances. For the local drug release various carrier subs­tances were used. Furthermore, drugs were covalently bonded to the implant surface or applied by surface impregnation. In different approaches biocompatibility could be increased by biomimicry or nanotechnologically modified biomaterials, which could additionally contribute to the reduction of capsular contracture.

Conclusion:

The development of coating technologies for the locally controlled sustained drug release using the implant surface as drug delivery system could potentially enable the local administration of drugs, which were orally delivered in clinical trials, and effectively reduced capsular contracture. This kind of application could potentially minimize the risk of adverse side effects. However, there are still some questions concerning controlled drug release systems for implant surfaces, as well as long-term results and possible side effects of drugs in a continuous local administration to be answered in further studies.

 
  • Literatur

  • 1 American Society of Plastic Surgeons (ASPS). Report of the 2010 Plastic Surgery Statistics (2011). Im Internet www.plasticsurgery.org Stand: 15.02.2012
  • 2 International Society of Aesthetic Plastic Surgery (ISAPS). ISAPS International Survey on Aesthetic/Cosmetic Procedures Performed in 2010 (2011). Im Internet www.isaps.org Stand: 15.02.2012
  • 3 Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Safety of PIP Silicone Breast Implant (01.02.2012). Im Internet: ec.europa.eu ; Stand: 15.02.2012
  • 4 Bondurant S, Ernster VL, Herdman R. Safety of Silicone Breast Implants. Washington DC: National Academies Press; 2000
  • 5 Peters WJ, Smith DC. Ivalon breast prostheses: evaluation 19 years after implantation. Plast Reconstr Surg 1981; 67: 514-518
  • 6 Puskas JE, Luebbers MT. Breast implants: the good, the bad and the ugly. Can nanotechnology improve implants?. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2011; 4: 153-168
  • 7 Barr S, Bayat A. Breast implant surface development: perspectives on development and manufacture. Aesthet Surg J 2011; 31: 56-67
  • 8 Berry MG, Davies DM. Breast augmentation: Part I – A review of the silicone prosthesis. J Plast Reconstr Aesthet Surg 2009; 63: 1761-1768
  • 9 Henriksen TF, Fryzek JP, Holmich LR et al. Surgical intervention and capsular contracture after breast augmentation: a prospective study of risk factors. Ann Plast Surg 2005; 54: 343-351
  • 10 Van Zele D, Heymans O. Breast implants. A review. Acta Chir Belg 2004; 104: 158-165
  • 11 Hartley JH. Specific applications of the double lumen prosthesis. Clin Plast Surg 1976; 3: 247-263
  • 12 Spear SL, Murphy DK, Slicton A et al. Inamed silicone breast implant core study results at 6 years. Plast Reconstr Surg 2007; 120: 8S-16S discussion 17S-18S
  • 13 Cunningham B, McCue J. Safety and effectiveness of Mentor’s MemoryGel implants at 6 years. Aesthetic Plast Surg 2009; 33: 440-444
  • 14 Hammond DC, Migliori MM, Caplin DA et al. Mentor Contour Profile(R) Gel Implants: Clinical Outcomes at 6 Years. Plast Reconstr Surg 2012;
  • 15 Dancey A, Nassimizadeh A, Levick P. Capsular contracture – What are the risk factors? – A 14 year series of 1 400 consecutive augmentations. J Plast Reconstr Aesthet Surg 2012;
  • 16 Diao ZY, Fu HL, Nie CL et al. Controlled release of transforming growth factor-beta receptor kinase inhibitor from thermosensitive Chitosan-based hydrogel: application for prevention of capsular contracture. Chin Med J (Engl) 2011; 124: 284-290
  • 17 Vacanti FX. PHEMA as a fibrous capsule-resistant breast prosthesis. Plast Reconstr Surg 2004; 113: 949-952
  • 18 Araco A, Caruso R, Araco F et al. Capsular contractures: a systematic review. Plast Reconstr Surg 2009; 124: 1808-1819
  • 19 Iwuagwu FC, Frame JD. Silicone breast implants: complications. Br J Plast Surg 1997; 50: 632-636
  • 20 Schreml S, Heine N, Eisenmann-Klein M et al. Bacterial colonization is of major relevance for high-grade capsular contracture after augmentation mammaplasty. Ann Plast Surg 2007; 59: 126-130
  • 21 Spyropoulou GA, Papalois A, Batistatou A et al. Can the use of hyaluronidase reduce capsule formation?. Aesthetic Plast Surg 2011; 35: 782-788
  • 22 Scuderi N, Mazzocchi M, Rubino C. Effects of zafirlukast on capsular contracture: controlled study measuring the mammary compliance. Int J Immunopathol Pharmacol 2007; 20: 577-584
  • 23 Wiener TC. Relationship of incision choice to capsular contracture. Aesthetic Plast Surg 2008; 32: 303-306
  • 24 Kannan RY, Salacinski HJ, Ghanavi JE et al. Silsesquioxane nanocomposites as tissue implants. Plast Reconstr Surg 2007; 119: 1653-1662
  • 25 Zeplin PH, Larena-Avellaneda A, Jordan M et al. Phosphorylcholine-coated silicone implants: effect on inflammatory response and fibrous capsule formation. Ann Plast Surg 2010; 65: 560-564
  • 26 Zeplin PH, Larena-Avellaneda A, Schmidt K. Surface modification of silicone breast implants by binding the antifibrotic drug halofuginone reduces capsular fibrosis. Plast Reconstr Surg 2010; 126: 266-274
  • 27 Pavlukhina S, Sukhishvili S. Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv Drug Deliv Rev 2011; 63: 822-836
  • 28 Ruiz-de-Erenchun R, Dotor de las Herrerias J, Hontanilla B. Use of the transforming growth factor-beta1 inhibitor peptide in periprosthetic capsular fibrosis: experimental model with tetraglycerol dipalmitate. Plast Reconstr Surg 2005; 116: 1370-1378
  • 29 San-Martin A, Dotor J, Martinez F et al. Effect of the inhibitor peptide of the transforming growth factor beta (p144) in a new silicone pericapsular fibrotic model in pigs. Aesthetic Plast Surg 2010; 34: 430-437
  • 30 Mazaheri MK, Schultz GS, Blalock TD et al. Role of connective tissue growth factor in breast implant elastomer capsular formation. Ann Plast Surg 2003; 50: 263-268 discussion 268
  • 31 Schlesinger SL, Ellenbogen R, Desvigne MN et al. Zafirlukast (Accolate): A new treatment for capsular contracture. Aesthet Surg J 2002; 22: 329-336
  • 32 Scuderi N, Mazzocchi M, Rubino C. Effects of zafirlukast on capsular contracture: controlled study measuring the mammary compliance. Int J Immunopathol Pharmacol 2007; 20: 577-584
  • 33 Bastos EM, Neto MS, Alves MT et al. Histologic analysis of zafirlukast’s effect on capsule formation around silicone implants. Aesthetic Plast Surg 2007; 31: 559-565
  • 34 Spano A, Palmieri B, Taidelli TP et al. Reduction of capsular thickness around silicone breast implants by zafirlukast in rats. Eur Surg Res 2008; 41: 8-14
  • 35 Gancedo M, Ruiz-Corro L, Salazar-Montes A et al. Pirfenidone prevents capsular contracture after mammary implantation. Aesthetic Plast Surg 2008; 32: 32-40
  • 36 Veras-Castillo ER, Cardenas-Camarena L, Lyra-Gonzalez I et al. Controlled Clinical Trial With Pirfenidone in the Treatment of Breast Capsular Contracture: Association of TGF-beta Polymorphisms. Ann Plast Surg 2011;
  • 37 Olbrich KC, Meade R, Bruno W et al. Halofuginone inhibits collagen deposition in fibrous capsules around implants. Ann Plast Surg 2005; 54: 293-296 discussion 296
  • 38 Friedman H, Stonerock C, Lefaivre J et al. The effect of seprafilm and interceed on capsule formation around silicone discs in a rat model. J Invest Surg 2004; 17: 271-281
  • 39 Lew DH, Yoon JH, Hong JW et al. Efficacy of antiadhesion barrier solution on periimplant capsule formation in a white rat model. Ann Plast Surg 2010; 65: 254-258
  • 40 Spyropoulou GA, Papalois A, Batistatou A et al. Can the use of hyaluronidase reduce capsule formation?. Aesthetic Plast Surg 2011; 35: 782-788
  • 41 Ibrahim Canter H, Konas E, Bozdogan O et al. Effect of slow-release 5-Fluorouracil on capsule formation around silicone breast implants: an experimental study with mice. Aesthetic Plast Surg 2007; 31: 674-679
  • 42 Zimman OA, Toblli J, Stella I et al. The effects of angiotensin-converting-enzyme inhibitors on the fibrous envelope around mammary implants. Plast Reconstr Surg 2007; 120: 2025-2033
  • 43 Benlier E, Unal Y, Usta U et al. Effect of verapamil on reduction of peri-implant capsular thickness. Aesthetic Plast Surg 2009; 33: 570-575
  • 44 Ajmal N, Riordan CL, Cardwell N et al. The effectiveness of sodium 2-mercaptoethane sulfonate (mesna) in reducing capsular formation around implants in a rabbit model. Plast Reconstr Surg 2003; 112: 1455-1461 discussion 1453–1462
  • 45 Khan UD. Breast augmentation, antibiotic prophylaxis, and infection: comparative analysis of 1 628 primary augmentation mammoplasties assessing the role and efficacy of antibiotics prophylaxis duration. Aesthetic Plast Surg 2010; 34: 42-47
  • 46 Darouiche RO, Meade R, Mansouri MD et al. In vivo efficacy of antimicrobe-impregnated saline-filled silicone implants. Plast Reconstr Surg 2002; 109: 1352-1357
  • 47 van Heerden J, Turner M, Hoffmann D et al. Antimicrobial coating agents: can biofilm formation on a breast implant be prevented?. J Plast Reconstr Aesthet Surg 2009; 62: 610-617
  • 48 pfm medical titanium GmbH. Kundeninformation Bristimplantate TiBREEZE der Fa. Gfe Medizintechnik GmbH (10.01.2012). Im Internet www.bfarm.de Stand: 25.01.2012 Tibreeze® titanisierte Silikonimplantate, (2003)
  • 49 Prantl L, Burgers R, Schreml S et al. A novel antibacterial silicone implant material with short- and long-term release of copper ions. Plast Reconstr Surg 2010; 125: 78e-80e
  • 50 Ghanbari H, Cousins BG, Seifalian AM. A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS). Macromol Rapid Commun 2011; 32: 1032-1046
  • 51 Bucky LP, Ehrlich HP, Sohoni S et al. The capsule quality of saline-filled smooth silicone, textured silicone, and polyurethane implants in rabbits: a long-term study. Plast Reconstr Surg 1994; 93: 1123-1131 discussion 1123–1132
  • 52 Picha GJ, Goldstein JA, Stohr E. Natural-Y Meme polyurethane versus smooth silicone: analysis of the soft-tissue interaction from 3 days to 1 year in the rat animal model. Plast Reconstr Surg 1990; 85: 903-916
  • 53 Caffee HH, Hathaway C. Polyurethane foam-covered implants and capsular contracture: a laboratory investigation. Plast Reconstr Surg 1990; 86: 708-710 discussion 704–711
  • 54 Luu HM, Hutter JC, Bushar HF. A physiologically based pharmacokinetic model for 2,4-toluenediamine leached from polyurethane foam-covered breast implants. Environ Health Perspect 1998; 106: 393-400
  • 55 Mendes PR, Bins-Ely J, Lima EA et al. Histological study on acute inflammatory reaction to polyurethane-coated silicone implants in rats. Acta Cir Bras 2008; 23 (01) 93-101
  • 56 Hester Jr TR, Ford NF, Gale PJ et al. Measurement of 2,4-toluenediamine in urine and serum samples from women with Meme or Replicon breast implants. Plast Reconstr Surg 1997; 100: 1291-1298
  • 57 Delclos KB, Blaydes B, Heflich RH et al. Assessment of DNA adducts and the frequency of 6-thioguanine resistant T-lymphocytes in F344 rats fed 2,4-toluenediamine or implanted with a toluenediisocyanate-containing polyester polyurethane foam. Mutat Res 1996; 367: 210-218
  • 58 Barr S, Hill E, Bayat A. Current implant surface technology: an examination of their nanostructure and their influence on fibroblast alignment and biocompatibility. Eplasty 2009; 9: e22
  • 59 Danino AM, Basmacioglu P, Saito S et al. Comparison of the capsular response to the Biocell RTV and Mentor 1600 Siltex breast implant surface texturing: a scanning electron microscopic study. Plast Reconstr Surg 2001; 108: 2047-2052
  • 60 Barnsley GP, Sigurdson LJ, Barnsley SE. Textured surface breast implants in the prevention of capsular contracture among breast augmentation patients: a meta-analysis of randomized controlled trials Plast Reconstr Surg 2006; 117: 2182-2190
  • 61 Wong CH, Samuel M, Tan BK et al. Capsular contracture in subglandular breast augmentation with textured versus smooth breast implants: a systematic review. Plast Reconstr Surg 2006; 118: 1224-1236
  • 62 Kuhn A, Singh S, Smith PD et al. Periprosthetic breast capsules contain the fibrogenic cytokines TGF-beta1 and TGF-beta2, suggesting possible new treatment approaches. Ann Plast Surg 2000; 44: 387-391
  • 63 Lossing C, Hansson HA. Peptide growth factors and myofibroblasts in capsules around human breast implants. Plast Reconstr Surg 1993; 91: 1277-1286
  • 64 Marques M, Brown SA, Rodrigues-Pereira P et al. Animal model of implant capsular contracture: effects of chitosan. Aesthet Surg J 2011; 31: 540-550
  • 65 Moreira M, Fagundes DJ, de Jesus Simoes M et al. Zafirlukast pocket delivery impairs the capsule healing around textured implants in rats. Aesthetic Plast Surg 2009; 33: 90-97
  • 66 D’Andrea F, Nicoletti GF, Grella E et al. Modification of cysteinyl leukotriene receptor expression in capsular contracture: Preliminary results. Ann Plast Surg 2007; 58: 212-214
  • 67 Tan KT, Wijeratne D, Shih B et al. Tumour necrosis factor-alpha expression is associated with increased severity of periprosthetic breast capsular contracture. Eur Surg Res 2010; 45: 327-332
  • 68 Akali A, Khan U, Khaw PT et al. Decrease in adhesion formation by a single application of 5-fluorouracil after flexor tendon injury. Plast Reconstr Surg 1999; 103: 151-158
  • 69 Manuskiatti W, Fitzpatrick RE. Treatment response of keloidal and hypertrophic sternotomy scars: comparison among intralesional corticosteroid, 5-fluorouracil, and 585-nm flashlamp-pumped pulsed-dye laser treatments. Arch Dermatol 2002; 138: 1149-1155
  • 70 Pajkos A, Deva AK, Vickery K et al. Detection of subclinical infection in significant breast implant capsules. Plast Reconstr Surg 2003; 111: 1605-1611
  • 71 Virden CP, Dobke MK, Stein P et al. Subclinical infection of the silicone breast implant surface as a possible cause of capsular contracture. Aesthetic Plast Surg 1992; 16: 173-179
  • 72 Del Pozo JL, Tran NV, Petty PM et al. Pilot study of association of bacteria on breast implants with capsular contracture. J Clin Microbiol 2009; 47: 1333-1337
  • 73 Tamboto H, Vickery K, Deva AK. Subclinical (biofilm) infection causes capsular contracture in a porcine model following augmentation mammaplasty. Plast Reconstr Surg 2010; 126: 835-842
  • 74 Swissmedic-Schweizerisches Heilmittelinstitut. Medienmitteilung Swissmedic stoppt den Einsatz von titanbeschichteten Brustimplantaten (8.11.2004). Im Internet www.swissmedic.ch Stand:11.2004
  • 75 pfm medical titanium GmbH. Pressemitteilung Brustimplantate der vormaligen GfE Medizintechnik GmbH (11.01.12). Im Internet www.pfmmedical.com Stand: 19.03.12
  • 76 Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM). Silikongel-gefüllte Brustimplantate der Hersteller Poly Implant Prothese (PIP) und Rofil Medical Nederland B.V. (24.06.2010). Im Internet www.bfarm.de Stand: 28.02.2012
  • 77 Keramidas E. Zero breast implant infection rate and 0.05% hematoma rate following 1 720 silicone implant placements for primary breast augmentation: surgical technique or surgeon luck?. Aesthetic Plast Surg 2009; 33: 123-124
  • 78 Holmich LR, Vejborg IM, Conrad C et al. Untreated silicone breast implant rupture. Plast Reconstr Surg 2004; 114: 204-214 discussion 206-215
  • 79 The Department of Health, Social Services and Public. Medical Device Alert-Silicone gel filled breast implants manufactured by Poly Implant Prothese (PIP) (15.03.12). Im Internet www.dhsspsni.gov.uk Stand: 15.03.12
  • 80 Berry MG, Stanek JJ. The PIP mammary prosthesis: A product recall study. J Plast Reconstr Aesthet Surg 2012;
  • 81 Brohim RM, Foresman PA, Hildebrandt PK et al. Early tissue reaction to textured breast implant surfaces. Ann Plast Surg 1992; 28: 354-362
  • 82 Twaites BR, Wilton LV, Shakir SA. Safety of zafirlukast: results of a postmarketing surveillance study on 7 976 patients in England. Drug Saf 2007; 30: 419-429
  • 83 European Medicines Agency (EMA). Esbriet: EPAR – Product Information (11.03.2011). Im Internet www.ema.europa.eu Stand: 07.02.12
  • 84 de Jonge MJ, Dumez H, Verweij J et al. Phase I and pharmacokinetic study of halofuginone, an oral quinazolinone derivative in patients with advanced solid tumours. Eur J Cancer 2006; 42: 1768-1777
  • 85 electronic Medicines Compendium (eMC). Summary of Product Characteristics (SPC)-Hyalase 1 500 I.U. Powder for Solution for Injection/Infusion (04.11.2011). Im Internet www.medicines.org.uk Stand: 09.11.2011
  • 86 Knetsch MLW, Koole LH. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers 3: 340-366
  • 87 Ashammakhi N, Wimpenny I, Nikkola L et al. Electrospinning: methods and development of biodegradable nanofibres for drug release. J Biomed Nanotechnol 2009; 5: 1-19
  • 88 Steiert A, Reimers K, Burke W et al. Covalent vectored binding of functional proteins by bifunctional crosslinking at silicone interfaces. J Biomed Mater Res A 100: 1248-1255
  • 89 Jessel N, Oulad-Abdelghani M, Meyer F. Multiple and time-scheduled in situ DNA delivery mediated by beta-cyclodextrin embedded in a polyelectrolyte multilayer. Proc Natl Acad Sci USA 2006; 103: 8618-8621
  • 90 Darouiche RO, Raad II, Bodey GP et al. Antibiotic susceptibility of staphylococcal isolates from patients with vascular catheter-related bacteremia: potential role of the combination of minocycline and rifampin. Int J Antimicrob Agents 1995; 6: 31-36
  • 91 U.S. Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH). Anaplastic Large Cell Lymphoma (ALCL) In Women with Breast Implants: Preliminary FDA Findings and Analyses (01.2011). Im Internet www.fda.gov Stand: 26.01.2011
  • 92 European Union (EU). SPEECH-John Dalli, Commissioner for Health and Consumer Policy Commissioner, Dalli calls for immediate actions concerning the safety of medical devices Statement in the press room of the Berlaymont Brussels (09.02.12). Im Internet: europa.eu ; Stand: 09.02.12