Klin Monbl Augenheilkd 2013; 230(5): 512-518
DOI: 10.1055/s-0032-1328471
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Therapeutische Ansätze bei Patienten mit Retinitis pigmentosa

Therapeutic Approaches for Retinitis Pigmentosa
J. Pach
Department für Augenheilkunde, Universitätsklinikum Tübingen
,
F. Gekeler
Department für Augenheilkunde, Universitätsklinikum Tübingen
› Author Affiliations
Further Information

Publication History

eingereicht 04 January 2013

akzeptiert 06 February 2013

Publication Date:
21 May 2013 (online)

Zusammenfassung

Hintergrund: Retinitis pigmentosa (RP) bezeichnet einen genetisch und klinisch heterogenen Formenkreis an dystrophischen Netzhauterkrankungen. Im Verlauf der Erkrankung kommt es zu zunehmenden Gesichtsfeldeinschränkungen bis hin zur Erblindung. Bisher ist keine Therapie etabliert. Durch zunehmendes Wissen über die zugrunde liegenden genetischen und pathophysiologischen Veränderungen gibt es eine Reihe von neuen Therapieansätzen, von denen einige hier vorgestellt werden sollen. Methodik: Es wurde eine systematische Literaturrecherche in PubMed zu definierten Stichworten durchgeführt. Ergebnisse: Zu den neuen Therapieansätzen gehören Gentherapie, pharmakologische Substanzen, Neuroprotektion, Elektrostimulation, retinale Implantate, Zelltransplantation und optogenetische Ansätze. Schlussfolgerung: In den letzten Jahren gab es einige Fortschritte in der Erforschung möglicher Therapieansätze bei dystrophischen Netzhauterkrankungen. Die Forschung ist in den einzelnen Bereichen unterschiedlich weit fortgeschritten. Obwohl es nach wie vor keine etablierte Therapie gibt, stehen die Chancen gut, dass in Zukunft zumindest einem Teil der RP-Patienten eine Therapie angeboten werden kann.

Abstract

Background: Retinitis pigmentosa (RP) is a clinically and genetically heterogenous group of hereditary retinal disorders, which lead to progressive loss of vision and finally blindness. Yet there is no approved therapy. Advances in unravelling underlying genetic disorders and pathophysiological mechanisms offer new therapeutic approaches of which some are summarised in this review. Methods: We performed a systematic literature research for defined key words in PubMed. Results: New approaches to therapy for RP include: gene therapy, pharmacological treatment, neuroprotection, electrical stimulation, retinal prostheses, retinal transplantation and optogenetic therapy. Conclusions: Recently there have been advances in new approaches for therapy of dystrophic retinal diseases. Advances in the different approaches are being made at different rates. Although there is no approved therapy yet, the future for treating RP at least in some patients looks promising.

 
  • Literatur

  • 1 RetNet. The Retinal Information Network (2012).. Im Internet: https://sph.uth.tmc.edu/Retnet/ Stand: 13.12.2012
  • 2 Kellner U, Tillack H, Renner AB. Hereditäre Netzhaut-Aderhaut-Dystrophien. Teil 1: Pathogenese, Diagnostik, Therapie, Patientenbetreuung. Ophthalmologe 2004; 101: 307-319
  • 3 Acland GM, Aguirre GD, Bennett J et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005; 12: 1072-1082
  • 4 Bennicelli J, Wright JF, Komaromy A et al. Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol Ther 2008; 16: 458-465
  • 5 Bainbridge JW, Smith AJ, Barker SS et al. Effect of gene therapy on visual function in Leberʼs congenital amaurosis. N Engl J Med 2008; 358: 2231-2239
  • 6 Jacobson SG, Cideciyan AV, Ratnakaram R et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 2012; 130: 9-24
  • 7 Gorbatyuk M, Justilien V, Liu J et al. Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme. Exp Eye Res 2007; 84: 44-52
  • 8 Millington-Ward S, Chadderton N, OʼReilly M et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 2011; 19: 642-649
  • 9 Sahni JN, Angi M, Irigoyen C et al. Therapeutic challenges to retinitis pigmentosa: from neuroprotection to gene therapy. Curr Genomics 2011; 12: 276-284
  • 10 Maeda T, Cideciyan AV, Maeda A et al. Loss of cone photoreceptors caused by chromophore depletion is partially prevented by the artificial chromophore pro-drug, 9-cis-retinyl acetate. Hum Mol Genet 2009; 18: 2277-2287
  • 11 Zhang T, Baehr W, Fu Y. Chemical chaperone TUDCA preserves cone photoreceptors in a mouse model of Leber congenital amaurosis. Invest Ophthalmol Vis Sci 2012; 53: 3349-3356
  • 12 Ohnaka M, Miki K, Gong YY et al. Long-term expression of glial cell line-derived neurotrophic factor slows, but does not stop retinal degeneration in a model of retinitis pigmentosa. J Neurochem 2012; 122: 1047-1053
  • 13 Schallenberg M, Charalambous P, Thanos S. GM-CSF protects rat photoreceptors from death by activating the SRC-dependent signalling and elevating anti-apoptotic factors and neurotrophins. Graefes Arch Clin Exp Ophthalmol 2012; 250: 699-712
  • 14 Sieving PA, Caruso RC, Tao W et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci USA 2006; 103: 3896-3901
  • 15 Kauper K, McGovern C, Sherman S et al. Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases. Invest Ophthalmol Vis Sci 2012; 53: 7484-7491
  • 16 Talcott KE, Ratnam K, Sundquist SM et al. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci 2011; 52: 2219-2226
  • 17 Leonard KC, Petrin D, Coupland SG et al. XIAP protection of photoreceptors in animal models of retinitis pigmentosa. PLoS One 2007; 2: e314
  • 18 Ozaki T, Nakazawa M, Yamashita T et al. Intravitreal injection or topical eye-drop application of a mu-calpain C2 L domain peptide protects against photoreceptor cell death in Royal College of Surgeonsʼ rats, a model of retinitis pigmentosa. Biochim Biophys Acta 2012; 1822: 1783-1795
  • 19 Paquet-Durand F, Sanges D, McCall J et al. Photoreceptor rescue and toxicity induced by different calpain inhibitors. J Neurochem 2010; 115: 930-940
  • 20 Nakazawa M, Ohguro H, Takeuchi K et al. Effect of nilvadipine on central visual field in retinitis pigmentosa: a 30-month clinical trial. Ophthalmologica 2011; 225: 120-126
  • 21 Cronin T, Raffelsberger W, Lee-Rivera I et al. The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress. Cell Death Differ 2010; 17: 1199-1210
  • 22 Yang Y, Mohand-Said S, Danan A et al. Functional cone rescue by RdCVF protein in a dominant model of retinitis pigmentosa. Mol Ther 2009; 17: 787-795
  • 23 Chow AY, Chow VY, Packo KH et al. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 2004; 122: 460-469
  • 24 Pardue MT, Phillips MJ, Hanzlicek B et al. Neuroprotection of photoreceptors in the RCS rat after implantation of a subretinal implant in the superior or inferior retina. Adv Exp Med Biol 2006; 572: 321-326
  • 25 Ciavatta VT, Kim M, Wong P et al. Retinal expression of Fgf2 in RCS rats with subretinal microphotodiode array. Invest Ophthalmol Vis Sci 2009; 50: 4523-4530
  • 26 Schmid H, Herrmann T, Kohler K et al. Neuroprotective effect of transretinal electrical stimulation on neurons in the inner nuclear layer of the degenerated retina. Brain Res Bull 2009; 79: 15-25
  • 27 Morimoto T, Fujikado T, Choi JS et al. Transcorneal electrical stimulation promotes the survival of photoreceptors and preserves retinal function in royal college of surgeons rats. Invest Ophthalmol Vis Sci 2007; 48: 4725-4732
  • 28 Willmann G, Schäferhoff K, Fischer MD et al. Gene expression profiling of the retina after transcorneal electrical stimulation in wild-type Brown Norway rats. Invest Ophthalmol Vis Sci 2011; 52: 7529-7537
  • 29 Tagami Y, Kurimoto T, Miyoshi T et al. Axonal regeneration induced by repetitive electrical stimulation of crushed optic nerve in adult rats. Jpn J Ophthalmol 2009; 53: 257-266
  • 30 Miyake K, Yoshida M, Inoue Y et al. Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury. Invest Ophthalmol Vis Sci 2007; 48: 2356-2361
  • 31 Ni YQ, Gan DK, Xu HD et al. Neuroprotective effect of transcorneal electrical stimulation on light-induced photoreceptor degeneration. Exp Neurol 2009; 219: 439-452
  • 32 Zhou WT, Ni YQ, Jin ZB et al. Electrical stimulation ameliorates light-induced photoreceptor degeneration in vitro via suppressing the proinflammatory effect of microglia and enhancing the neurotrophic potential of Muller cells. Exp Neurol 2012; 238: 192-208
  • 33 Schatz A, Arango-Gonzalez B, Fischer D et al. Transcorneal electrical stimulation shows neuroprotective effects in retinas of light-exposed rats. Invest Ophthalmol Vis Sci 2012; 53: 5552-5561
  • 34 Schatz A, Röck T, Naycheva L et al. Transcorneal electrical stimulation for patients with retinitis pigmentosa: a prospective, randomized, sham-controlled exploratory study. Invest Ophthalmol Vis Sci 2011; 52: 4485-4496
  • 35 Lane FJ, Huyck MH, Troyk P. Looking ahead: planning for the first human intracortical visual prosthesis by using pilot data from focus groups of potential users. Disabil Rehabil Assist Technol 2011; 6: 139-147
  • 36 Tokuda T, Asano R, Sugitani S et al. In vivo stimulation on rabbit retina using CMOS LSI-based multi-chip flexible stimulator for retinal prosthesis. Conf Proc IEEE Eng Med Biol Soc 2007; 2007: 5791-5794
  • 37 Morimoto T, Kamei M, Nishida K et al. Chronic implantation of newly developed suprachoroidal-transretinal stimulation prosthesis in dogs. Invest Ophthalmol Vis Sci 2011; 52: 6785-6792
  • 38 Fujikado T, Kamei M, Sakaguchi H et al. Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 2011; 52: 4726-4733
  • 39 Keserü M, Feucht M, Bornfeld N et al. Acute electrical stimulation of the human retina with an epiretinal electrode array. Acta Ophthalmol 2012; 90: e1-e8
  • 40 Humayun MS, Dorn JD, da Cruz L et al. Interim results from the international trial of Second Sightʼs visual prosthesis. Ophthalmology 2012; 119: 779-788
  • 41 Klauke S, Goertz M, Rein S et al. Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans. Invest Ophthalmol Vis Sci 2011; 52: 449-455
  • 42 Menzel-Severing J, Laube T, Brockmann C et al. Implantation and explantation of an active epiretinal visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial. Eye (Lond) 2012; 26: 501-509
  • 43 Zrenner E, Bartz-Schmidt KU, Benav H et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 2011; 278: 1489-1497
  • 44 Stingl K, Bartz-Schmidt KU, Besch D et al. Was können blinde Patienten mit dem subretinalen Alpha-IMS-Implantat im Alltag sehen? Aktuelle Übersicht aus der Tübinger klinischen Studie. Ophthalmologe 2012; 109: 136-141
  • 45 Rizzo 3rd JF, Shire DB, Kelly SK et al. Overview of the boston retinal prosthesis: challenges and opportunities to restore useful vision to the blind. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 7492-7495
  • 46 Mathieson K, Loudin J, Goetz G et al. Photovoltaic Retinal Prosthesis with High Pixel Density. Nat Photonics 2012; 6: 391-397
  • 47 Wang NK, Tosi J, Kasanuki JM et al. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 2010; 89: 911-919
  • 48 Li Y, Tsai YT, Hsu CW et al. Long-term safety and efficacy of human induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med 2012; 18: 1312-1319
  • 49 Tibbetts MD, Samuel MA, Chang TS et al. Stem cell therapy for retinal disease. Curr Opin Ophthalmol 2012; 23: 226-234
  • 50 Busskamp V, Duebel J, Balya D et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 2010; 329: 413-417