Semin Neurol 2012; 32(03): 173-178
DOI: 10.1055/s-0032-1329193
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Amyotrophic Lateral Sclerosis: Drug Therapy from the Bench to the Bedside

Summer Bell Gibson
1   Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah
,
Mark B. Bromberg
1   Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah
› Author Affiliations
Further Information

Publication History

Publication Date:
01 November 2012 (online)

Abstract

Amyotrophic lateral sclerosis (ALS) is an unrelenting progressive neurodegenerative disease causing progressive weakness, ultimately leading to death. Despite aggressive research, the pathways leading to neuronal death are incompletely understood. Riluzole is the only drug clinically proven to enhance survival of ALS patients, but its mechanism of action is not clearly understood. In this article, the proposed pathophysiology of ALS is reviewed including glutamate excitotoxicity, oxidative stress, mitochondrial dysfunction, autoimmune mechanisms, protein aggregation, SOD1 accumulation, and neuronal death. Based on these mechanisms, past major ALS drug studies will be reviewed as well as promising current ALS drug studies, focusing on the advancement of these studies from the bench to the patient's bedside.

 
  • References

  • 1 Charcot JM. De la sclérose latérale amyotrophique. Prog Med 1874; 2: 325-455
  • 2 Gil J, Funalot B, Verschueren A , et al. Causes of death amongst French patients with amyotrophic lateral sclerosis: a prospective study. Eur J Neurol 2008; 15 (11) 1245-1251
  • 3 Spataro R, Lo Re M, Piccoli T, Piccoli F, La Bella V. Causes and place of death in Italian patients with amyotrophic lateral sclerosis. Acta Neurol Scand 2010; 122 (3) 217-223
  • 4 Hardiman O, van den Berg LH, Kiernan MC. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 2011; 7 (11) 639-649
  • 5 McCombe PA, Henderson RD. Effects of gender in amyotrophic lateral sclerosis. Gend Med 2010; 7 (6) 557-570
  • 6 Belsh JM, Schiffman PL. Misdiagnosis in patients with amyotrophic lateral sclerosis. Arch Intern Med 1990; 150 (11) 2301-2305
  • 7 Chiò A. ISIS Survey: an international study on the diagnostic process and its implications in amyotrophic lateral sclerosis. J Neurol 1999; 246 (Suppl. 03) III1-III5
  • 8 Byrne S, Elamin M, Bede P, Hardiman O. Absence of consensus in diagnostic criteria for familial neurodegenerative diseases. J Neurol Neurosurg Psychiatry 2012; 83 (4) 365-367
  • 9 Byrne S, Walsh C, Lynch C , et al. Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2011; 82 (6) 623-627
  • 10 Siddique T, Ajroud-Driss S. Familial amyotrophic lateral sclerosis, a historical perspective. Acta Myol 2011; 30 (2) 117-120
  • 11 Renton AE, Majounie E, Waite A , et al; ITALSGEN Consortium. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011; 72 (2) 257-268
  • 12 Majounie E, Renton AE, Mok K , et al; Chromosome 9-ALS/FTD Consortium; French research network on FTLD/FTLD/ALS; ITALSGEN Consortium. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 2012; 11 (4) 323-330
  • 13 Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know?. Nat Rev Neurol 2011; 7 (11) 603-615
  • 14 Abbott A. Neurologists strike gold in drug screen effort. Nature 2002; 417 (6885) 109
  • 15 Plaitakis A, Caroscio JT. Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann Neurol 1987; 22 (5) 575-579
  • 16 Rothstein JD, Tsai G, Kuncl RW , et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 1990; 28 (1) 18-25
  • 17 Hugon J, Tabaraud F, Rigaud M, Vallat JM, Dumas M. Glutamate dehydrogenase and aspartate aminotransferase in leukocytes of patients with motor neuron disease. Neurology 1989; 39 (7) 956-958
  • 18 Rothstein JD, Martin LJ, Kuncl RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 1992; 326 (22) 1464-1468
  • 19 Rosen DR. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 364 (6435) 362
  • 20 Shibata N. Transgenic mouse model for familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation. Neuropathology 2001; 21 (1) 82-92
  • 21 Pagani MR, Gonzalez LE, Uchitel OD. Autoimmunity in amyotrophic lateral sclerosis: past and present. Neurol Res Int 2011; 2011: 497080
  • 22 Pagani MR, Reisin RC, Uchitel OD. Calcium signaling pathways mediating synaptic potentiation triggered by amyotrophic lateral sclerosis IgG in motor nerve terminals. J Neurosci 2006; 26 (10) 2661-2672
  • 23 Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 2003; 4 (7) 552-565
  • 24 Alexianu ME, Kozovska M, Appel SH. Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology 2001; 57 (7) 1282-1289
  • 25 Henkel JS, Engelhardt JI, Siklós L , et al. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 2004; 55 (2) 221-235
  • 26 Polymenidou M, Cleveland DW. The seeds of neurodegeneration: prion-like spreading in ALS. Cell 2011; 147 (3) 498-508
  • 27 Grad LI, Guest WC, Yanai A , et al. Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc Natl Acad Sci U S A 2011; 108 (39) 16398-16403
  • 28 Ravits J, Laurie P, Fan Y, Moore DH. Implications of ALS focality: rostral-caudal distribution of lower motor neuron loss postmortem. Neurology 2007; 68 (19) 1576-1582
  • 29 Benatar M. Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol Dis 2007; 26 (1) 1-13
  • 30 Scott S, Kranz JE, Cole J , et al. Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph Lateral Scler 2008; 9 (1) 4-15
  • 31 The darker side of stem cells. Nature 2012; 483 (7387) 5
  • 32 Cyranoski D. China's stem-cell rules go unheeded. Nature 2012; 484 (7393) 149-150
  • 33 Uccelli A, Milanese M, Principato MC , et al. Intravenous mesenchymal stem cells improve survival and motor function in experimental amyotrophic lateral sclerosis. Mol Med 2012; 18 (1) 794-804
  • 34 Xu L, Yan J, Chen D , et al. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation 2006; 82 (7) 865-875
  • 35 Koh SH, Baik W, Noh MY , et al. The functional deficiency of bone marrow mesenchymal stromal cells in ALS patients is proportional to disease progression rate. Exp Neurol 2012; 233 (1) 472-480
  • 36 Bellingham MC. A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade?. CNS Neurosci Ther 2011; 17 (1) 4-31
  • 37 Martin D, Thompson MA, Nadler JV. The neuroprotective agent riluzole inhibits release of glutamate and aspartate from slices of hippocampal area CA1. Eur J Pharmacol 1993; 250 (3) 473-476
  • 38 Bensimon G, Lacomblez L, Meininger V. ALS/Riluzole Study Group. A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 1994; 330 (9) 585-591
  • 39 Bialer M. Chemical properties of antiepileptic drugs (AEDs). Adv Drug Deliv Rev 2011; (Nov) 21
  • 40 Maragakis NJ, Jackson M, Ganel R, Rothstein JD. Topiramate protects against motor neuron degeneration in organotypic spinal cord cultures but not in G93A SOD1 transgenic mice. Neurosci Lett 2003; 338 (2) 107-110
  • 41 Cudkowicz ME, Shefner JM, Schoenfeld DA , et al; Northeast ALS Consortium. A randomized, placebo-controlled trial of topiramate in amyotrophic lateral sclerosis. Neurology 2003; 61 (4) 456-464
  • 42 Kaufmann P, Lomen-Hoerth C. ALS treatment strikes out while trying for a homer: the topiramate trial. Neurology 2003; 61 (4) 434-435
  • 43 Miller RG, Moore II DH, Gelinas DF , et al; Western ALS Study Group. Phase III randomized trial of gabapentin in patients with amyotrophic lateral sclerosis. Neurology 2001; 56 (7) 843-848
  • 44 Eisen A, Stewart H, Schulzer M, Cameron D. Anti-glutamate therapy in amyotrophic lateral sclerosis: a trial using lamotrigine. Can J Neurol Sci 1993; 20 (4) 297-301
  • 45 Ryberg H, Askmark H, Persson LI. A double-blind randomized clinical trial in amyotrophic lateral sclerosis using lamotrigine: effects on CSF glutamate, aspartate, branched-chain amino acid levels and clinical parameters. Acta Neurol Scand 2003; 108 (1) 1-8
  • 46 Gredal O, Werdelin L, Bak S , et al. A clinical trial of dextromethorphan in amyotrophic lateral sclerosis. Acta Neurol Scand 1997; 96 (1) 8-13
  • 47 de Carvalho M, Pinto S, Costa J, Evangelista T, Ohana B, Pinto A. A randomized, placebo-controlled trial of memantine for functional disability in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2010; 11 (5) 456-460
  • 48 Pascuzzi RM, Shefner J, Chappell AS , et al. A phase II trial of talampanel in subjects with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2010; 11 (3) 266-271
  • 49 Paizs M, Tortarolo M, Bendotti C, Engelhardt JI, Siklós L. Talampanel reduces the level of motoneuronal calcium in transgenic mutant SOD1 mice only if applied presymptomatically. Amyotroph Lateral Scler 2011; 12 (5) 340-344
  • 50 Rothstein JD, Patel S, Regan MR , et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005; 433 (7021) 73-77
  • 51 U.S. National Institutes of Health. Clinical trial ceftriaxone in subjects with ALS. Available at: http://clinicaltrials.gov/ct2/show/NCT00349622?term=Ceftriaxone+als&rank=1 . Accessed May 22, 2012
  • 52 Ghadge GD, Slusher BS, Bodner A , et al. Glutamate carboxypeptidase II inhibition protects motor neurons from death in familial amyotrophic lateral sclerosis models. Proc Natl Acad Sci U S A 2003; 100 (16) 9554-9559
  • 53 Wechsler IS. The treatment of amyotrophic lateral sclerosis with Vitamin E (tocopherols). Am J Med Sci 1940; 200 (6) 765-778
  • 54 Pascuzzi RM. Blinded and seeing the light, (John Noseworthy), Lou Gehrig and other tales of enlightenment). Semin Neurol 1998; 18 (3) 415-418
  • 55 Gurney ME, Cutting FB, Zhai P , et al. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol 1996; 39 (2) 147-157
  • 56 Desnuelle C, Dib M, Garrel C, Favier A. A double-blind, placebo-controlled randomized clinical trial of alpha-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS Riluzole-Tocopherol Study Group. Amyotroph Lateral Scler Other Motor Neuron Disord 2001; 2 (1) 9-18
  • 57 Graf M, Ecker D, Horowski R , et al; German vitamin E/ALS Study Group. High dose vitamin E therapy in amyotrophic lateral sclerosis as add-on therapy to riluzole: results of a placebo-controlled double-blind study. J Neural Transm 2005; 112 (5) 649-660
  • 58 Wang H, O'Reilly EJ, Weisskopf MG , et al. Vitamin E intake and risk of amyotrophic lateral sclerosis: a pooled analysis of data from 5 prospective cohort studies. Am J Epidemiol 2011; 173 (6) 595-602
  • 59 Andreassen OA, Dedeoglu A, Klivenyi P, Beal MF, Bush AI. N-acetyl-L-cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis. Neuroreport 2000; 11 (11) 2491-2493
  • 60 Orrell RW, Lane RJ, Ross M. A systematic review of antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease. Amyotroph Lateral Scler 2008; 9 (4) 195-211
  • 61 Pastula DM, Moore DH, Bedlack RS. Creatine for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev 2010; (6) CD005225
  • 62 Kaneb HM, Sharp PS, Rahmani-Kondori N, Wells DJ. Metformin treatment has no beneficial effect in a dose-response survival study in the SOD1(G93A) mouse model of ALS and is harmful in female mice. PLoS ONE 2011; 6 (9) e24189
  • 63 Weishaupt JH, Bartels C, Pölking E , et al. Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res 2006; 41 (4) 313-323
  • 64 Kwieciński H, Janik P, Jamrozik Z, Opuchlik A. [The effect of selegiline and vitamin E in the treatment of ALS: an open randomized clinical trials]. Neurol Neurochir Pol 2001; 35 (1, Suppl) 101-106
  • 65 Cheah BC, Kiernan MC. Dexpramipexole, the R(+) enantiomer of pramipexole, for the potential treatment of amyotrophic lateral sclerosis. IDrugs 2010; 13 (12) 911-920
  • 66 Phase 3 study of dexpramipexole in ALS (EMPOWER). Available at: http://clinicaltrials.gov/ct2/show/NCT01281189?term=Dexpramipexole+als&rank=3 . Accessed May 22, 2012
  • 67 Cudkowicz M, Bozik ME, Ingersoll EW , et al. The effects of dexpramipexole (KNS-760704) in individuals with amyotrophic lateral sclerosis. Nat Med 2011; 17 (12) 1652-1656
  • 68 Baumann J. Results of treatment of certain diseases of the central nervous system with ACTH and corticosteroids. Acta Neurol Scand Suppl 1965; 13 (Pt 2) 453-461
  • 69 Brown Jr RH, Hauser SL, Harrington H, Weiner HL. Failure of immunosuppression with a ten- to 14-day course of high-dose intravenous cyclophosphamide to alter the progression of amyotrophic lateral sclerosis. Arch Neurol 1986; 43 (4) 383-384
  • 70 Monstad I, Dale I, Petlund CF, Sjaastad O. Plasma exchange in motor neuron disease. A controlled study. J Neurol 1979; 221 (1) 59-66
  • 71 Meucci N, Nobile-Orazio E, Scarlato G. Intravenous immunoglobulin therapy in amyotrophic lateral sclerosis. J Neurol 1996; 243 (2) 117-120
  • 72 Appel SH, Stewart SS, Appel V , et al. A double-blind study of the effectiveness of cyclosporine in amyotrophic lateral sclerosis. Arch Neurol 1988; 45 (4) 381-386
  • 73 Van Den Bosch L, Tilkin P, Lemmens G, Robberecht W. Minocycline delays disease onset and mortality in a transgenic model of ALS. Neuroreport 2002; 13 (8) 1067-1070
  • 74 Gordon PH, Moore DH, Gelinas DF , et al. Placebo-controlled phase I/II studies of minocycline in amyotrophic lateral sclerosis. Neurology 2004; 62 (10) 1845-1847
  • 75 Gordon PH, Moore DH, Miller RG , et al; Western ALS Study Group. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol 2007; 6 (12) 1045-1053
  • 76 Keller AF, Gravel M, Kriz J. Treatment with minocycline after disease onset alters astrocyte reactivity and increases microgliosis in SOD1 mutant mice. Exp Neurol 2011; 228 (1) 69-79
  • 77 Neuraltus P. Neuraltus Pharmaceuticals reports clinical results from phase 1 NP001 study in the treatment of amyotrophic lateral sclerosis (ALS). Available at: http://www.neuraltus.com/pages/news_rel11_30_10.html . Accessed May 22, 2012
  • 78 A study of NP001 in subjects with amyotrophic lateral sclerosis (ALS). Available at: http://clinicaltrials.gov/ct2/show/NCT01281631?term=NP001+als&rank=2 . Accessed May 22, 2012
  • 79 Cytokinetics. Cytokinetics announces company participation and support of ALS fundraising activities in connection with ALS awareness month. Available at: http://www.cytokinetics.com/press_releases/release/pr_1336516928 . Accessed May 22, 2012
  • 80 Shefner J, Cedarbaum JM, Cudkowicz ME , et al. Safety, tolerability and pharmacodynamics of a skeletal muscle activator in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2012; 13 (5) 430-438
  • 81 Smith RA, Miller TM, Yamanaka K , et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest 2006; 116 (8) 2290-2296
  • 82 Safety T, and Activity Study of ISIS SOD1Rx to Treat Familial Amyotrophic Lateral Sclerosis (ALS) Caused by SOD1 Gene Mutations (SOD-1). Available at: http://clinicaltrials.gov/ct2/show/NCT01041222?term=isis+als&rank=1 . Accessed May 22, 2012
  • 83 Wahl M. ISIS-SOD1-Rx: So Far, So Good. MDA/ALS Newsmagazine: MDA ALS division. Available at: http://alsn.mda.org/news/isis-sod1-rx-so-far-so-good . Accessed April 27, 2011
  • 84 Lanka V, Wieland S, Barber J, Cudkowicz M. Arimoclomol: a potential therapy under development for ALS. Expert Opin Investig Drugs 2009; 18 (12) 1907-1918
  • 85 Phase II/III randomized, placebo-controlled trial of Arimoclomol in SOD1 positive familial amyotrophic lateral sclerosis. Available at: http://clinicaltrials.gov/ct2/show/NCT00706147?term=Arimoclomol+als&rank=1 . Accessed May 22, 2012
  • 86 Broom WJ, Auwarter KE, Ni J , et al. Two approaches to drug discovery in SOD1-mediated ALS. J Biomol Screen 2006; 11 (7) 729-735
  • 87 Madsen A. Anti-malarial drug takes aim at SOD1. MDA/ALS Newsmagazine. Available at: http://alsn.mda.org/article/anti-malarial-drug-takes-aim-sod1 . Accessed September 9, 2009
  • 88 SOD1 inhibition by pyrimethamine in familial amyotrophic lateral sclerosis (ALS). Available at: http://clinicaltrials.gov/ct2/show/NCT01083667?term=pyrimethamine+als&rank=1 . Accessed May 22, 2012
  • 89 Mazzini L, Mareschi K, Ferrero I , et al. Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy 2012; 14 (1) 56-60
  • 90 Karussis D, Karageorgiou C, Vaknin-Dembinsky A , et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010; 67 (10) 1187-1194
  • 91 Glass JD, Boulis NM, Johe K , et al. Lumbar intraspinal injection of neural stem cells in patients with ALS: Results of a phase I trial in 12 patients. Stem Cells 2012; (Mar) 13