Anästhesiol Intensivmed Notfallmed Schmerzther 2012; 47(10): 626-635
DOI: 10.1055/s-0032-1329400
Fachwissen
Intensivmedizin Topthema: Lungenersatzverfahren
© Georg Thieme Verlag Stuttgart · New York

Lungenersatzverfahren – Welche Therapie für welchen Patienten? Wahl der Beatmungsstrategie im akuten Lungenversagen

Which kind of therapy for which patient? Choosing the ventilator strategy in ARDS.
Lars Töpfer
,
Steffen Weber-Carstens
,
Vera von Dossow-Hanfstingl
Further Information

Publication History

Publication Date:
24 October 2012 (online)

Zusammenfassung

Die Entstehung eines beatmungsinduzierten Lungenschadens (VILI) trägt zur hohen Sterblichkeit des akuten Lungenversagens bei. Durch lungenprotektive Beatmung mit einem Tidalvolumen von 6 ml/kgIBW (Ideal Body Weight) und einem Plateaudruck <30 cm H2O kann die Letalität nachweislich reduziert werden und wurde aus diesem Grund als einer von zehn Qualitätsindikatoren der Intensivmedizin in Deutschland ausgewählt. Über das optimale PEEP-Niveau herrscht gegenwärtig Unklarheit, allerdings scheinen Patienten mit schwerer Gasaustauschstörung von höheren PEEP-Werten zu profitieren.

Die Anpassung der Beatmungseinstellungen an die individuellen mechanischen Eigenschaften der Lunge wird die ARDS-Therapie in den nächsten Jahren verändern. Die Messung des transpulmonalen Drucks mittels einer Ösophagusdrucksonde oder die elektrische Impendanztomografie (EIT) sind vielversprechende Verfahren, müssen aber ihre Überlegenheit noch unter Beweis stellen.

Bis dahin muss es Ziel jedes Klinikers sein, die Empfehlungen der lungenprotektiven Beatmung auch tatsächlich in die tägliche Praxis umzusetzen.

Abstract:

Ventilator-induced lung injury (VILI) contributes to the high mortality of ALI/ARDS. Lung protective ventilation with a tidal volume of 6 ml / kgIBW (Ideal Body Weight) and a plateau pressure <30 cm H2O has shown to reduce mortality and was thus selected as one of ten quality indicators for critical care in Germany. The optimal level of PEEP is currently unclear; however, patients with severe disorders of gas exchange seem to benefit from higher PEEP levels.

Adjusting the respirator settings to the mechanical properties of the individual patient will change the treatment of ARDS in the next few years. Measurements of transpulmonary pressure by an oesophageal probe or electrical impedance tomography (EIT) are promising approaches, but still need to proof their superiority. Until then, every clinician must aim to translate the recommendations of lung protective ventilation into daily practice.

Kernaussagen

  • Die lungenprotektive Ventilation ist eine der wenigen evidenzbasierten Therapien beim akuten Lungenversagen.

  • Die lungenprotektive Ventilation bei ALI / ARDS ist einer von 10 Qualitätsindikatoren für die Intensivmedizin.

  • Niedrige Tidalvolumina (< 6 ml/kg IBW) und die Begrenzung des Plateaudrucks (< 30 cmH2O) kennzeichnen die lungenprotektive Ventilation.

  • Patienten mit einem schweren ARDS (PaO2/FiO2-Quotient < 150) profitieren von einem höheren PEEP.

  • Tidalvolumen und Atemwegsdruck vernachlässigen die individuellen intrathorakalen Druckverhältnisse und geben die auf die Lunge einwirkenden Kräfte nur unzureichend wider.

  • Die entscheidende Determinante der auf das Lungenparenchym einwirkenden Kraft ist der transpulmonale Druck.

  • Der Pleuradruck unterliegt bei kritisch kranken Patienten großen Variabilitäten.

  • Es gibt Hinweise, dass die Ermittlung des transpulmonalen Drucks und eine entsprechende Anpassung des PEEP der Festlegung der PEEP-Niveaus entsprechend der inspiratorischen Sauerstoffkonzentration nach ARDS-Network Studie überlegen sein könnte.

  • Die EIT ist eine hochinteressante Technologie, die das Potenzial hat, dem Patienten eine individuelle Beatmungstherapie zukommen zu lassen.

  • Extrakorporale Lungenunterstützungsverfahren bzw. Lungenersatzverfahren (ECMO) können nicht nur als „Rescue Therapy“ eingesetzt werden, sondern sollten bei Ausreizung der differenzierten Beatmungsstrategie rechtzeitig diskutiert werden.

  • Die Therapie eines Lungenunterstützungssystems bzw. Lungenersatzverfahrens erfordert ein professionelles Team, das Komplikationen rechtzeitig erkennt und behandelt. Somit sollte diese Therapie speziellen Zentren vorbehalten sein und Patienten frühzeitig in ein solches Zentrum verlegt werden.

Ergänzendes Material

 
  • Literaturverzeichnis:

  • 1 Bernard GR et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994; 149: 818-824
  • 2 Rubenfeld GD. Epidemiology of acute lung injury. Crit Care Med 2003; 31: 276-284
  • 3 Brun-Buisson C et al. Epidemiology and outcome of acute lung injury in European intensive care units. Results from the ALIVE study. Intensive Care Med 2004; 30: 51-61
  • 4 Phua J et al. Has mortality from acute respiratory distress syndrome decreased over time? A systematic review. Am. J. Respir. Crit. Care Med 2009; 179: 220-227
  • 5 Gattinoni L et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001; 345: 568-573
  • 6 Wiedemann HP et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354: 2564-2575
  • 7 Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 2006; 34: 1311-1318
  • 8 Weissmann N et al. Hypoxia-induced pulmonary hypertension: different impact of iloprost, sildenafil, and nitric oxide. Respir Med 2007; 101: 2125-2132
  • 9 Derdak S et al. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med 2002; 166: 801-808
  • 10 Zapol WM et al. Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA 1979; 242: 2193-2196
  • 11 Lewandowski K et al. High survival rate in 122 ARDS patients managed according to a clinical algorithm including extracorporeal membrane oxygenation. Intensive Care Med 1997; 23: 819-835
  • 12 Peek GJ et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 2009; 374: 1351-1363
  • 13 Davies A et al. Extracorporeal Membrane Oxygenation for 2009 Influenza A(H1N1) Acute Respiratory Distress Syndrome. JAMA 2009; 302: 1888-1895
  • 14 Noah MA et al. Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1). JAMA 2011; 306: 1659-1668
  • 15 Patroniti N et al. The Italian ECMO network experience during the 2009 influenza A(H1N1) pandemic: preparation for severe respiratory emergency outbreaks. Intensive Care Med 2011; 37: 1447-1457
  • 16 Zimmermann M et al. Pumpless extracorporeal interventional lung assist in patients with acute respiratory distress syndrome: a prospective pilot study. Crit Care 2009; 13
  • 17 Deja M et al. Evidence-based therapy of severe acute respiratory distress syndrome: an algorithm-guided approach. J Int Med Res 2008; 36: 211-221
  • 18 The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. NEJM 2000; 342: 1301-1308
  • 19 Villar J et al. An early PEEP/FIO2 trial identifies different degrees of lung injury in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2007; 176: 795-804
  • 20 ARDS Definition Task Force et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307: 2526-2533
  • 21 Cortés I, Peñuelas O, Esteban A. Acute respiratory distress syndrome: evaluation and management. Minerva Anestesiol 2012; 78: 343-357
  • 22 Brower RG et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. NEJM 2004; 351: 327-336
  • 23 Fan E, Needham DM, Stewart TE. Ventilatory management of acute lung injury and acute respiratory distress syndrome. JAMA 2005; 294: 2889-2896
  • 24 Amato MB et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. NEJM 1998; 338: 347-354
  • 25 Stewart TE et al. Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure- and Volume-Limited Ventilation Strategy Group. NEJM 1998; 338: 355-361
  • 26 Hager DN, Krishnan JA, Hayden DL, Brower RG. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 2005; 172: 1241-1245
  • 27 Needham DM et al. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study. BMJ 2012; 344
  • 28 Young MP et al. Ventilation of patients with acute lung injury and acute respiratory distress syndrome: has new evidence changed clinical practice?. Crit Care Med 2004; 32: 1260-1265
  • 29 Kalhan R et al. Underuse of lung protective ventilation: analysis of potential factors to explain physician behavior. Crit Care Med 2006; 34: 300-306
  • 30 Han S et al. Short women with severe sepsis-related acute lung injury receive lung protective ventilation less frequently: an observational cohort study. Crit Care 2011; 15
  • 31 Rubenfeld GD et al. Barriers to providing lung-protective ventilation to patients with acute lung injury. Crit Care Med 2004; 32: 1289-1293
  • 32 Vinayak AG et al. The relationship between sedative infusion requirements and permissive hypercapnia in critically ill, mechanically ventilated patients. Crit Care Med 2006; 34: 1668-1673
  • 33 Mikkelsen ME et al. Potential reasons why physicians underuse lung-protective ventilation: a retrospective cohort study using physician documentation. Respir Care 2008; 53: 455-461
  • 34 Marini JJ. Point: Is pressure assist-control preferred over volume assist-control mode for lung protective ventilation in patients with ARDS?. Yes Chest 2011; 140: 286-290
  • 35 Esteban A et al. Prospective randomized trial comparing pressure-controlled ventilation and volume-controlled ventilation in ARDS. For the Spanish Lung Failure Collaborative Group. Chest 2000; 117: 1690-1696
  • 36 Meade MO et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008; 299: 637-645
  • 37 Mercat A et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008; 299: 646-655
  • 38 Briel M et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 2010; 303: 865-873
  • 39 Hickling KG. The pressure-volume curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Respir Crit Care Med 1998; 158: 194-202
  • 40 Crotti S et al. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 2001; 164: 131-140
  • 41 Downie JM, Nam AJ, Simon BA. Pressure-volume curve does not predict steady-state lung volume in canine lavage lung injury. Am J Respir Crit Care Med 2004; 169: 957-962
  • 42 Stahl CA et al. Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome. Crit Care Med 2006; 34: 2090-2098
  • 43 Esteban A et al. Evolution of mechanical ventilation in response to clinical research. Am. J. Respir. Crit Care Med 2008; 177: 170-177
  • 44 Braun J-P et al. Qualitätsindikatoren in der Intensivmedizin: wozu? Nutzen oder Last für Intensivmediziner. Ger Med Sci 2010; 8
  • 45 Hubmayr RD. Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med 2002; 165: 1647-1653
  • 46 Hubmayr RD. Another look at the opening and collapse story. Crit. Care Med 2009; 37: 2667-2668
  • 47 Ngiam N, Kavanagh BP. Ventilator-induced lung injury: the role of gene activation. Curr Opin Crit Care 2012; 18: 16-22
  • 48 Plötz FB, Slutsky AS, van Vught A, Heijnen CJ. Ventilator-induced lung injury and multiple system organ failure: a critical review of facts and hypotheses. Intensive Care Med 2004; 30: 1865-1872
  • 49 Ferguson ND et al. Airway pressures, tidal volumes, and mortality in patients with acute respiratory distress syndrome. Crit Care Med 2005; 33: 21-30
  • 50 Stapleton RD et al. Causes and timing of death in patients with ARDS. Chest 2005; 128: 525-532
  • 51 Hommel M et al. Bronchial fistulae in ARDS patients: management with an extracorporeal lung assist device. Eur Respir J 2008; 32: 1652-1655
  • 52 Weber-Carstens S et al. Hypercapnia in late-phase ALI/ARDS: providing spontaneous breathing using pumpless extracorporeal lung assist. Intensive Care Med 2009; 35: 1100-1105
  • 53 Terragni PP et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 2007; 175: 160-166
  • 54 Chiumello D et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 2008; 178: 346-355
  • 55 Talmor D et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med 2006; 34: 1389-1394
  • 56 Malbrain ML et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study. Crit. Care Med 2005; 33: 315-322
  • 57 Ranieri VM et al. Impairment of lung and chest wall mechanics in patients with acute respiratory distress syndrome: role of abdominal distension. Am J Respir Crit Care Med 1997; 156: 1082-1091
  • 58 Gattinoni L, Protti A, Caironi P, Carlesso E. Ventilator-induced lung injury: the anatomical and physiological framework. Crit Care Med 2010; 38: 539-548
  • 59 Talmor DS, Fessler HE. Are esophageal pressure measurements important in clinical decision-making in mechanically ventilated patients?. Respir Care discussion 2010; 55: 172-174
  • 60 Talmor D et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. NEJM 2008; 359: 2095-2104
  • 61 Grasso S et al. ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure. Intensive Care Med 2012; 38: 395-403
  • 62 Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 1999; 159: 1241-1248
  • 63 Putensen C et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001; 164: 43-49
  • 64 Leray V et al. A case of pneumomediastinum in a patient with acute respiratory distress syndrome on pressure support ventilation. Respir Care 2010; 55: 770-773
  • 65 Gattinoni L et al. Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 1987; 136: 730-736
  • 66 Malbouisson LM et al. Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2001; 163: 1444-1450
  • 67 Caironi P et al. Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med 2010; 181: 578-586
  • 68 Bodenstein M, David M, Markstaller K. Principles of electrical impedance tomography and its clinical application. Crit Care Med 2009; 37: 713-724
  • 69 Adler A et al. Whither lung EIT: where are we, where do we want to go and what do we need to get there?. Physiol Meas 2012; 33: 679-694
  • 70 Wrigge H et al. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med 2008; 36: 903-909
  • 71 Muders T et al. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury. Crit Care Med 2012; 40: 903-911
  • 72 Bikker IG et al. Bedside measurement of changes in lung impedance to monitor alveolar ventilation in dependent and non-dependent parts by electrical impedance tomography during a positive end-expiratory pressure trial in mechanically ventilated intensive care unit patients. Crit Care 2010; 14
  • 73 Grasso S et al. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 2004; 32: 1018-1027
  • 74 Grasso S et al. ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med 2007; 176: 761-767
  • 75 Bouhemad B et al. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med 2011; 183: 341-347