Rofo 2013; 185(4): 358-366
DOI: 10.1055/s-0032-1330446
Experimentielle Radiologie
© Georg Thieme Verlag KG Stuttgart · New York

Optical Imaging of Breast Cancer Using Hemodynamic Changes Induced by Valsalva Maneuver

Optische Brustbildgebung: Valsalva-Manöver zur Induzierung von hämodynamischen Veränderungen
N. F. Schreiter
1   Department of Radiology, Charité, Berlin
,
N. Volkwein
1   Department of Radiology, Charité, Berlin
,
P. Schneider
1   Department of Radiology, Charité, Berlin
,
M. H. Maurer
1   Department of Radiology, Charité, Berlin
,
S. Piper
2   Berlin NeuroImaging Center (BNIC), Neurology, Charité, Berlin
,
C. Schmitz
2   Berlin NeuroImaging Center (BNIC), Neurology, Charité, Berlin
,
A. Poellinger
1   Department of Radiology, Charité, Berlin
› Author Affiliations
Further Information

Publication History

11 July 2012

19 November 2012

Publication Date:
14 March 2013 (online)

Abstract

Purpose: To investigate whether changes in hemodynamics induced by Valsalva maneuver can be exploited for detecting and characterizing breast lesions by optical mammography.

Materials and Methods: 30 women underwent optical imaging of the breast using a DYNOT 232 system and performing Valsalva maneuvers prior to biopsy. Changes in light absorption due to changes in oxyhemoglobin and deoxyhemoglobin concentrations were recorded volumetrically and in a time-resolved manner. The parameters full width at half maximum (FWHM), time to ten (TTT), and peak amplitude (PA) of the reconstructed concentration time curves yielded color-coded maps of the breast which were separately evaluated by two experienced readers for detection rate, degree of visibility, and detection of additional lesions. ROC analysis was performed with the evaluation results.

Results: 10 patients were excluded from analysis due to artifacts or inadequately performed Valsalva maneuver. The resulting 20 patients showed a clear increase in oxygenated and deoxygenated hemoglobin concentration after the onset of the Valsalva maneuver. ROC analysis yielded AUC values (0.393 – 0.779) that did not differ from random probabilities. The highest AUC values were obtained for FWHM (AUC: 0.779, detection rates [60 – 70 %], identification of additional lesions [55 – 70 %]). PA analysis had the highest detection rate (70 – 90 %) but also the highest identification of false-positive additional lesions (80 – 90 %). The concordance rates of the two readers for malignant lesions were satisfactory (0.524 – 1.0).

Conclusion: Our study revealed susceptibility to artifacts and a large number of false-positive additional lesions, suggesting that the evaluation of hemodynamic changes after Valsalva maneuver by optical imaging is not a promising method.

Zusammenfassung

Ziel: Zu überprüfen, inwieweit die optische Mammografie eine durch ein Valsalva-Manöver induzierte Veränderung der Hämodynamik zur Läsionsdetektion und Charakterisierung nutzen kann.

Material und Methoden: 30 Patientinnen unterzogen sich vor Brustbiopsie einer optischen Untersuchung mit Valsalva-Manöver am Tomografen DYNOT 232. Die Konzentrationsänderungen von Oxyhämoglobin und Deoxyhämoglobin wurden dreidimensional zeitaufgelöst rekonstruiert. Die Parameter „full width at half maximum“ (FWHM), „time to ten“ (TTT) und „peak amplitude“ (PA) aus den zeitaufgelösten Kurvenverläufen wurden farblich kodiert grafisch dargestellt. Die errechneten Bilder wurden von 2 erfahrenen Auswertern getrennt bezüglich Detektionsrate, Grad der Sichtbarkeit und dem Auftreten von Zusatzläsionen evaluiert und eine ROC-Analyse durchgeführt.

Ergebnisse: 10 Patientinnen waren aufgrund von Artefakten oder nicht regelrechten Valsava-Manövern nicht auswertbar. Die ROC-Analyse zeigte AUC-Werte (0,393 – 0,779) die sich nicht von der Zufallswahrscheinlichkeit unterschieden. Die höchsten AUC-Werte ergab das FWHM-Model (AUC: 0,779, Detektions- [60 – 70 %] und Zusatzläsionsraten [55 – 70 %]). Das PA-Modell zeigte zwar die höchsten Detektions- (70 – 90 %) aber auch die höchsten Zusatzläsionsraten (80 – 90 %). Die Konkordanzraten beider Auswerter bei malignen Läsionen waren zufriedenstellend (0,524 – 1,0).

Schlussfolgerung: Die Artefaktanfälligkeit und die zahlreichen falsch positiven Zusatzläsionen lassen in unserer Studie die optische Beurteilung der Hämodynamik mittels Valsalva-Manöver als nicht vielversprechend erscheinen.

 
  • References

  • 1 Jemal A, Siegel R, Ward E et al. Cancer statistics, 2008. CA: a cancer journal for clinicians 2008; 58: 71-96
  • 2 Carter CL, Allen C, Henson DE. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 1989; 63: 181-187
  • 3 Clark GM, Sledge Jr GW, Osborne CK et al. Survival from first recurrence: relative importance of prognostic factors in 1,015 breast cancer patients. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 1987; 5: 55-61
  • 4 Hayes DF. Tumor markers for breast cancer. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO 1993; 4: 807-819
  • 5 Van Lancker M, Goor C, Sacre R et al. Patterns of axillary lymph node metastasis in breast cancer. American journal of clinical oncology 1995; 18: 267-272
  • 6 Schneider P, Piper S, Schmitz CH et al. Fast 3D Near-infrared breast imaging using indocyanine green for detection and characterization of breast lesions. Fortschr Röntgenstr 2011; 183: 956-963
  • 7 Fischer U, Schwethelm L, Baum FT et al. Effort, accuracy and histology of MR-guided vacuum biopsy of suspicious breast lesions – retrospective evaluation after 389 interventions. Fortschr Röntgenstr 2009; 181: 774-781
  • 8 Baltzer PA, Dietzel M, Vag T et al. Can color-coded parametric maps improve dynamic enhancement pattern analysis in MR mammography?. Fortschr Röntgenstr 2010; 182: 254-260
  • 9 Muller-Schimpfle MP, Heindel W, Kettritz U et al. Consensus Meeting of Course Directors in Breast Imaging, 9 May 2009, in Frankfurt am Main – Topic: Masses. Fortschr Röntgenstr 2010; 182: 671-675
  • 10 Adamietz B, Schulz-Wendtland R, Meier-Meitinger M. Asymptomatic siliconoma after prosthesis rupture: portrayal using elastography. Fortschr Röntgenstr 2009; 181: 385-386
  • 11 Siegmann KC, Moron HU, Baur A et al. Diagnostic value of a breast MRI score for the prediction of malignancy of breast lesions detected solely with MRI. Fortschr Röntgenstr 2009; 181: 556-563
  • 12 Siegmann KC, Muller KT, Vogel U et al. MR imaging of the breast before and after neoadjuvant treatment – enhancement characteristics and T 2 signal intensity of breast cancers and breast parenchyma. Fortschr Röntgenstr 2010; 182: 493-500
  • 13 Siegmann KC, Speck S, Baur A et al. Performance of a newly developed clip (Tumark Professional) for MRI-guided lesion localization after MRI-guided vacuum-assisted biopsy – first results. Fortschr Röntgenstr 2009; 181: 147-154
  • 14 Schmitt B, Zamecnik P, Zaiss M et al. A new contrast in MR mammography by means of chemical exchange saturation transfer (CEST) imaging at 3 Tesla: preliminary results. Fortschr Röntgenstr 2011; 183: 1030-1036
  • 15 Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature 2008; 452: 580-589
  • 16 Tromberg BJ, Shah N, Lanning R et al. Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2000; 2: 26-40
  • 17 Gibson AP, Hebden JC, Arridge SR. Recent advances in diffuse optical imaging. Physics in medicine and biology 2005; 50: R1-43
  • 18 Hielscher AH. Optical tomographic imaging of small animals. Current opinion in biotechnology 2005; 16: 79-88
  • 19 Poellinger A, Persigehl T, Mahler M et al. Near-infrared imaging of the breast using omocianine as a fluorescent dye: results of a placebo-controlled, clinical, multicenter trial. Investigative radiology 2011; 46: 697-704
  • 20 Flexman ML, Khalil MA, Al Abdi R et al. Digital optical tomography system for dynamic breast imaging. Journal of biomedical optics 2011; 16
  • 21 Schmitz CH, Klemer DP, Hardin R et al. Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements. Appl Opt 2005; 44: 2140-2153
  • 22 Hofvind S, Skaane P. Stage Distribution of Breast Cancer Diagnosed Before and After Implementation of Population-Based Mammographic Screening. Fortschr Röntgenstr 2012; 184: 437-442
  • 23 Czwoydzinski J, Girnus R, Sommer A et al. Central online quality assurance in radiology: an IT solution exemplified by the German Breast Cancer Screening Program. Fortschr Röntgenstr 2011; 183: 849-854
  • 24 Weigel S, Batzler WU, Decker T et al. First epidemiological analysis of breast cancer incidence and tumor characteristics after implementation of population-based digital mammography screening. Fortschr Röntgenstr 2009; 181: 1144-1150
  • 25 Jackman RJ, Marzoni Jr FA. Stereotactic histologic biopsy with patients prone: technical feasibility in 98% of mammographically detected lesions. American journal of roentgenology 2003; 180: 785-794
  • 26 Warner E, Messersmith H, Causer P et al. Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer. Annals of internal medicine 2008; 148: 671-679
  • 27 Elmore JG, Armstrong K, Lehman CD et al. Screening for breast cancer. JAMA: the journal of the American Medical Association 2005; 293: 1245-1256
  • 28 Kuhl CK, Schrading S, Leutner CC et al. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2005; 23: 8469-8476
  • 29 Poellinger A, Burock S, Grosenick D et al. Breast cancer: early- and late-fluorescence near-infrared imaging with indocyanine green – a preliminary study. Radiology 2011; 258: 409-416
  • 30 Grosenick D, Moesta KT, Moller M et al. Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients. Physics in medicine and biology 2005; 50: 2429-2450
  • 31 Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature medicine 2001; 7: 987-989
  • 32 Suzuki M, Hori K, Abe I et al. Functional characterization of the microcirculation in tumors. Cancer metastasis reviews 1984; 3: 115-126
  • 33 Fukumura D, Duda DG, Munn LL et al. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 2010; 17: 206-225
  • 34 Tsutsui S, Kume M, Era S. Prognostic value of microvessel density in invasive ductal carcinoma of the breast. Breast Cancer 2003; 10: 312-319
  • 35 Weidner N, Semple JP, Welch WR et al. Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. The New England journal of medicine 1991; 324: 1-8
  • 36 Alacam B, Yazici B, Intes X et al. Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods. Physics in medicine and biology 2008; 53: 837-859
  • 37 Leff DR, Warren OJ, Enfield LC et al. Diffuse optical imaging of the healthy and diseased breast: a systematic review. Breast Cancer Res Treat 2008; 108: 9-22