Semin Neurol 2012; 32(04): 361-373
DOI: 10.1055/s-0032-1331809
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Neuroimaging in the Evaluation of Epilepsy

Naymee J. Velez-Ruiz
1   Division of Epilepsy, Department of Neurology, Emory University Hospital and Emory University School of Medicine, Atlanta, Georgia
,
Joshua P. Klein
2   Division of Hospital Neurology, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
29 January 2013 (online)

Abstract

Neuroimaging has provided extraordinary insight into the pathologic substrate of epilepsy. The excellent spatial resolution and soft tissue contrast of magnetic resonance imaging (MRI) allows identification of a substantial number of pathologies including hippocampal sclerosis, malformations of cortical development, low grade tumors, and vascular abnormalities, among others. Complementary imaging modalities such as positron emission tomography, single photon emission computed tomography, and magnetoencephalography can be diagnostically helpful as well. Identification of a pathologic substrate is particularly important in patients with medically refractory epilepsy who are undergoing evaluation for surgery, and essential in determining the likelihood of seizure freedom after surgical intervention. This article reviews current and emerging neuroimaging techniques in the field of epilepsy.

 
  • References

  • 1 Shorvon SD. A history of neuroimaging in epilepsy 1909-2009. Epilepsia 2009; 50 (Suppl. 03) 39-49
  • 2 Gastaut H. Conclusions: computerized transverse axial tomography in epilepsy. Epilepsia 1976; 17 (3) 337-338
  • 3 Ormson MJ, Kispert DB, Sharbrough FW , et al. Cryptic structural lesions in refractory partial epilepsy: MR imaging and CT studies. Radiology 1986; 160 (1) 215-219
  • 4 Von Oertzen J, Urbach H, Jungbluth S , et al. Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J Neurol Neurosurg Psychiatry 2002; 73 (6) 643-647
  • 5 Kim S, Mountz JM. SPECT imaging of epilepsy: an overview and comparison with F-18 FDG PET. Int J Mol Imaging 2011; 2011: 813028
  • 6 Spanaki MV, Spencer SS, Corsi M, MacMullan J, Seibyl J, Zubal IG. Sensitivity and specificity of quantitative difference SPECT analysis in seizure localization. J Nucl Med 1999; 40 (5) 730-736
  • 7 Stufflebeam SM. Clinical magnetoencephalography for neurosurgery. Neurosurg Clin N Am 2011; 22 (2) 153-167 , vii–viii
  • 8 Simos PG, Papanicolaou AC, Breier JI , et al. Localization of language-specific cortex by using magnetic source imaging and electrical stimulation mapping. J Neurosurg 1999; 91 (5) 787-796
  • 9 Schwartz ES, Edgar JC, Gaetz WC, Roberts TP. Magnetoencephalography. Pediatr Radiol 2010; 40 (1) 50-58
  • 10 Okada YC, Wu J, Kyuhou S. Genesis of MEG signals in a mammalian CNS structure. Electroencephalogr Clin Neurophysiol 1997; 103 (4) 474-485
  • 11 Knowlton RC, Elgavish R, Howell J , et al. Magnetic source imaging versus intracranial electroencephalogram in epilepsy surgery: a prospective study. Ann Neurol 2006; 59 (5) 835-842
  • 12 Alberstone CD, Skirboll SL, Benzel EC , et al. Magnetic source imaging and brain surgery: presurgical and intraoperative planning in 26 patients. J Neurosurg 2000; 92 (1) 79-90
  • 13 Sutherling WW, Mamelak AN, Thyerlei D , et al. Influence of magnetic source imaging for planning intracranial EEG in epilepsy. Neurology 2008; 71 (13) 990-996
  • 14 Engel Jr J. Mesial temporal lobe epilepsy: what have we learned?. Neuroscientist 2001; 7 (4) 340-352
  • 15 Cavanagh JB, Meyer A. Aetiological aspects of Ammon's horn sclerosis associated with temporal lobe epilepsy. BMJ 1956; 2 (5006) 1403-1407
  • 16 Margerison JH, Corsellis JA. Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 1966; 89 (3) 499-530
  • 17 Jackson GD, Berkovic SF, Tress BM, Kalnins RM, Fabinyi GC, Bladin PF. Hippocampal sclerosis can be reliably detected by magnetic resonance imaging. Neurology 1990; 40 (12) 1869-1875
  • 18 Kuzniecky R, Burgard S, Faught E, Morawetz R, Bartolucci A. Predictive value of magnetic resonance imaging in temporal lobe epilepsy surgery. Arch Neurol 1993; 50 (1) 65-69
  • 19 Hammers A, Heckemann R, Koepp MJ , et al. Automatic detection and quantification of hippocampal atrophy on MRI in temporal lobe epilepsy: a proof-of-principle study. Neuroimage 2007; 36 (1) 38-47
  • 20 Spencer SS, McCarthy G, Spencer DD. Diagnosis of medial temporal lobe seizure onset: relative specificity and sensitivity of quantitative MRI. Neurology 1993; 43 (10) 2117-2124
  • 21 Farid N, Girard HM, Kemmotsu N , et al. Temporal lobe epilepsy: quantitative MR volumetry in detection of hippocampal atrophy. Radiology 2012; 264 (2) 542-550
  • 22 von Oertzen J, Urbach H, Blümcke I , et al. Time-efficient T2 relaxometry of the entire hippocampus is feasible in temporal lobe epilepsy. Neurology 2002; 58 (2) 257-264
  • 23 Connelly A, Jackson GD, Duncan JS, King MD, Gadian DG. Magnetic resonance spectroscopy in temporal lobe epilepsy. Neurology 1994; 44 (8) 1411-1417
  • 24 Garcia PA, Laxer KD, Ng T. Application of spectroscopic imaging in epilepsy. Magn Reson Imaging 1995; 13 (8) 1181-1185
  • 25 Meiners LC, van Gils A, Jansen GH , et al. Temporal lobe epilepsy: the various MR appearances of histologically proven mesial temporal sclerosis. AJNR Am J Neuroradiol 1994; 15 (8) 1547-1555
  • 26 Grossman RI, Yousem DM. Congenital disorders of the brain and spine. In: Thrall JH, , ed. Neuroradiology: The Requisites. Philadelphia, PA: Elsevier; 2003
  • 27 Bajic D, Kumlien E, Mattsson P, Lundberg S, Wang C, Raininko R. Incomplete hippocampal inversion-is there a relation to epilepsy?. Eur Radiol 2009; 19 (10) 2544-2550
  • 28 Henry TR, Chupin M, Lehéricy S , et al. Hippocampal sclerosis in temporal lobe epilepsy: findings at 7T. Radiology 2011; 261 (1) 199-209
  • 29 Lévesque MF, Nakasato N, Vinters HV, Babb TL. Surgical treatment of limbic epilepsy associated with extrahippocampal lesions: the problem of dual pathology. J Neurosurg 1991; 75 (3) 364-370
  • 30 Raymond AA, Fish DR, Stevens JM, Cook MJ, Sisodiya SM, Shorvon SD. Association of hippocampal sclerosis with cortical dysgenesis in patients with epilepsy. Neurology 1994; 44 (10) 1841-1845
  • 31 King D, Spencer SS, McCarthy G, Luby M, Spencer DD. Bilateral hippocampal atrophy in medial temporal lobe epilepsy. Epilepsia 1995; 36 (9) 905-910
  • 32 Spencer SS. The relative contributions of MRI, SPECT, and PET imaging in epilepsy. Epilepsia 1994; 35 (Suppl. 06) S72-S89
  • 33 Foldvary N, Lee N, Hanson MW , et al. Correlation of hippocampal neuronal density and FDG-PET in mesial temporal lobe epilepsy. Epilepsia 1999; 40 (1) 26-29
  • 34 O'Brien TJ, Newton MR, Cook MJ , et al. Hippocampal atrophy is not a major determinant of regional hypometabolism in temporal lobe epilepsy. Epilepsia 1997; 38 (1) 74-80
  • 35 Spencer SS. Selection of candidates for temporal resection. In: Wyllie E, , ed. The Treatment of Epilepsy: Principles & Practice. Philadelphia, PA: Lippincott Williams & Wilkins; 2001: 1077-1094
  • 36 Franceschi M, Lucignani G, Del Sole A , et al. Increased interictal cerebral glucose metabolism in a cortical-subcortical network in drug naive patients with cryptogenic temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 1995; 59 (4) 427-431
  • 37 Gaillard WD, White S, Malow B , et al. FDG-PET in children and adolescents with partial seizures: role in epilepsy surgery evaluation. Epilepsy Res 1995; 20 (1) 77-84
  • 38 Manno EM, Sperling MR, Ding X , et al. Predictors of outcome after anterior temporal lobectomy: positron emission tomography. Neurology 1994; 44 (12) 2331-2336
  • 39 Blum DE, Ehsan T, Dungan D, Karis JP, Fisher RS. Bilateral temporal hypometabolism in epilepsy. Epilepsia 1998; 39 (6) 651-659
  • 40 Sackellares JC, Siegel GJ, Abou-Khalil BW , et al. Differences between lateral and mesial temporal metabolism interictally in epilepsy of mesial temporal origin. Neurology 1990; 40 (9) 1420-1426
  • 41 Theodore WH, Sato S, Kufta CV, Gaillard WD, Kelley K. FDG-positron emission tomography and invasive EEG: seizure focus detection and surgical outcome. Epilepsia 1997; 38 (1) 81-86
  • 42 Wong CY, Geller EB, Chen EQ , et al. Outcome of temporal lobe epilepsy surgery predicted by statistical parametric PET imaging. J Nucl Med 1996; 37 (7) 1094-1100
  • 43 Carne RP, O'Brien TJ, Kilpatrick CJ , et al. MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome. Brain 2004; 127 (Pt 10) 2276-2285
  • 44 Velasco TR, Wichert-Ana L, Mathern GW , et al. Utility of ictal single photon emission computed tomography in mesial temporal lobe epilepsy with hippocampal atrophy: a randomized trial. Neurosurgery 2011; 68 (2) 431-436 , discussion 436
  • 45 Sakamoto S, Tsuyuguchi N, Takami T , et al. Interictal patterns of cerebral glucose metabolism, perfusion, and magnetic field in mesial temporal lobe epilepsy. Epilepsia 2003; 44 (9) 1196-1206
  • 46 Wennberg R, Valiante T, Cheyne D. EEG and MEG in mesial temporal lobe epilepsy: where do the spikes really come from?. Clin Neurophysiol 2011; 122 (7) 1295-1313
  • 47 Reinsberger C, Tanaka N, Cole AJ , et al. Current dipole orientation and distribution of epileptiform activity correlates with cortical thinning in left mesiotemporal epilepsy. Neuroimage 2010; 52 (4) 1238-1242
  • 48 Wang A, Peters TM, de Ribaupierre S, Mirsattari SM. Functional magnetic resonance imaging for language mapping in temporal lobe epilepsy. Epilepsy Res Treat 2012; 2012: 198183
  • 49 Detre JA, Maccotta L, King D , et al. Functional MRI lateralization of memory in temporal lobe epilepsy. Neurology 1998; 50 (4) 926-932
  • 50 Golby AJ, Poldrack RA, Illes J, Chen D, Desmond JE, Gabrieli JD. Memory lateralization in medial temporal lobe epilepsy assessed by functional MRI. Epilepsia 2002; 43 (8) 855-863
  • 51 Richardson MP, Strange BA, Duncan JS, Dolan RJ. Memory fMRI in left hippocampal sclerosis: optimizing the approach to predicting postsurgical memory. Neurology 2006; 66 (5) 699-705
  • 52 Rabin ML, Narayan VM, Kimberg DY , et al. Functional MRI predicts post-surgical memory following temporal lobectomy. Brain 2004; 127 (Pt 10) 2286-2298
  • 53 Jansen A, Sehlmeyer C, Pfleiderer B , et al. Assessment of verbal memory by fMRI: lateralization and functional neuroanatomy. Clin Neurol Neurosurg 2009; 111 (1) 57-62
  • 54 Madan N, Grant PE. New directions in clinical imaging of cortical dysplasias. Epilepsia 2009; 50 (Suppl. 09) 9-18
  • 55 Andrade CS, Leite CdaC. Malformations of cortical development: current concepts and advanced neuroimaging review. Arq Neuropsiquiatr 2011; 69 (1) 130-138
  • 56 Bruggemann JM, Wilke M, Som SS, Bye AM, Bleasel A, Lawson JA. Voxel-based morphometry in the detection of dysplasia and neoplasia in childhood epilepsy: limitations of grey matter analysis. J Clin Neurosci 2009; 16 (6) 780-785
  • 57 Lim CC, Yin H, Loh NK, Chua VG, Hui F, Barkovich AJ. Malformations of cortical development: high-resolution MR and diffusion tensor imaging of fiber tracts at 3T. AJNR Am J Neuroradiol 2005; 26 (1) 61-64
  • 58 Eriksson SH, Rugg-Gunn FJ, Symms MR, Barker GJ, Duncan JS. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain 2001; 124 (Pt 3) 617-626
  • 59 Phi JH, Paeng JC, Lee HS , et al. Evaluation of focal cortical dysplasia and mixed neuronal and glial tumors in pediatric epilepsy patients using 18F-FDG and 11C-methionine pet. J Nucl Med 2010; 51 (5) 728-734
  • 60 Salamon N, Kung J, Shaw SJ , et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 2008; 71 (20) 1594-1601
  • 61 Funke ME, Moore K, Orrison Jr WW, Lewine JD. The role of magnetoencephalography in “nonlesional” epilepsy. Epilepsia 2011; 52 (Suppl. 04) 10-14
  • 62 Knake S, Halgren E, Shiraishi H , et al. The value of multichannel MEG and EEG in the presurgical evaluation of 70 epilepsy patients. Epilepsy Res 2006; 69 (1) 80-86
  • 63 Chang BS, Walsh CA. Mapping form and function in the human brain: the emerging field of functional neuroimaging in cortical malformations. Epilepsy Behav 2003; 4 (6) 618-625
  • 64 Woo CL, Chuang SH, Becker LE , et al. Radiologic-pathologic correlation in focal cortical dysplasia and hemimegalencephaly in 18 children. Pediatr Neurol 2001; 25 (4) 295-303
  • 65 Salamon N, Andres M, Chute DJ , et al. Contralateral hemimicrencephaly and clinical-pathological correlations in children with hemimegalencephaly. Brain 2006; 129 (Pt 2) 352-365
  • 66 Guerrini R, Sicca F, Parmeggiani L. Epilepsy and malformations of the cerebral cortex. Epileptic Disord 2003; 5 (Suppl. 02) S9-S26
  • 67 Sisodiya SM. Surgery for malformations of cortical development causing epilepsy. Brain 2000; 123 (Pt 6) 1075-1091
  • 68 Tassi L, Colombo N, Cossu M , et al. Electroclinical, MRI and neuropathological study of 10 patients with nodular heterotopia, with surgical outcomes. Brain 2005; 128 (Pt 2) 321-337
  • 69 Mathern GW. Challenges in the surgical treatment of epilepsy patients with cortical dysplasia. Epilepsia 2009; 50 (Suppl. 09) 45-50
  • 70 Kim YH, Kang HC, Kim DS , et al. Neuroimaging in identifying focal cortical dysplasia and prognostic factors in pediatric and adolescent epilepsy surgery. Epilepsia 2011; 52 (4) 722-727
  • 71 Barkovich AJ, Raybaud CA. Malformations of cortical development. Neuroimaging Clin N Am 2004; 14 (3) 401-423
  • 72 Colombo N, Citterio A, Galli C , et al. Neuroimaging of focal cortical dysplasia: neuropathological correlations. Epileptic Disord 2003; 5 (Suppl. 02) S67-S72
  • 73 Barkovich AJ, Kuzniecky RI, Bollen AW, Grant PE. Focal transmantle dysplasia: a specific malformation of cortical development. Neurology 1997; 49 (4) 1148-1152
  • 74 Chapman K, Wyllie E, Najm I , et al. Seizure outcome after epilepsy surgery in patients with normal preoperative MRI. J Neurol Neurosurg Psychiatry 2005; 76 (5) 710-713
  • 75 Ruggieri PM, Najm I, Bronen R , et al. Neuroimaging of the cortical dysplasias. Neurology 2004; 62 (6) (Suppl. 03) S27-S29
  • 76 Palmini A, Najm I, Avanzini G , et al. Terminology and classification of the cortical dysplasias. Neurology 2004; 62 (6) (Suppl. 03) S2-S8
  • 77 Colombo N, Tassi L, Galli C , et al. Focal cortical dysplasias: MR imaging, histopathologic, and clinical correlations in surgically treated patients with epilepsy. AJNR Am J Neuroradiol 2003; 24 (4) 724-733
  • 78 Widdess-Walsh P, Kellinghaus C, Jeha L , et al. Electro-clinical and imaging characteristics of focal cortical dysplasia: correlation with pathological subtypes. Epilepsy Res 2005; 67 (1–2) 25-33
  • 79 Morris HH, Estes ML. Brain tumors and epilepsy. In: Wyllie E, , ed. The Treatment of Epilepsy: Principles & Practice. Philadelphia, PA: Lippincott Williams & Wilkins; 2001: 615-626
  • 80 Johannsson JH, Rekate HL, Roessmann U. Gangliogliomas: pathological and clinical correlation. J Neurosurg 1981; 54 (1) 58-63
  • 81 Zentner J, Wolf HK, Ostertun B , et al. Gangliogliomas: clinical, radiological, and histopathological findings in 51 patients. J Neurol Neurosurg Psychiatry 1994; 57 (12) 1497-1502
  • 82 Daumas-Duport C, Scheithauer BW, Chodkiewicz JP, Laws Jr ER, Vedrenne C. Dysembryoplastic neuroepithelial tumor: a surgically curable tumor of young patients with intractable partial seizures. Report of thirty-nine cases. Neurosurgery 1988; 23 (5) 545-556
  • 83 Koeller KK, Dillon WP. Dysembryoplastic neuroepithelial tumors: MR appearance. AJNR Am J Neuroradiol 1992; 13 (5) 1319-1325
  • 84 Raymond AA, Halpin SF, Alsanjari N , et al. Dysembryoplastic neuroepithelial tumor. Features in 16 patients. Brain 1994; 117 (Pt 3) 461-475
  • 85 Kahlenberg CA, Fadul CE, Roberts DW , et al. Seizure prognosis of patients with low-grade tumors. Seizure 2012; 21 (7) 540-545
  • 86 Prayson RA, Estes ML, Morris HH. Coexistence of neoplasia and cortical dysplasia in patients presenting with seizures. Epilepsia 1993; 34 (4) 609-615
  • 87 Lieu AS, Howng SL. Intracranial meningiomas and epilepsy: incidence, prognosis and influencing factors. Epilepsy Res 2000; 38 (1) 45-52
  • 88 Grossman RI, Yousem DM. Neoplasms of the brain. In: Thrall JH, , ed. Neuroradiology: The Requisites. Philadelphia, PA: Elsevier; 2003: 98-105
  • 89 Saloner D, Uzelac A, Hetts S, Martin A, Dillon W. Modern meningioma imaging techniques. J Neurooncol 2010; 99 (3) 333-340
  • 90 Hakyemez B, Yildirim N, Gokalp G, Erdogan C, Parlak M. The contribution of diffusion-weighted MR imaging to distinguishing typical from atypical meningiomas. Neuroradiology 2006; 48 (8) 513-520
  • 91 Nagar VA, Ye JR, Ng WH , et al. Diffusion-weighted MR imaging: diagnosing atypical or malignant meningiomas and detecting tumor dedifferentiation. AJNR Am J Neuroradiol 2008; 29 (6) 1147-1152
  • 92 Demir MK, Iplikcioglu AC, Dincer A, Arslan M, Sav A. Single voxel proton MR spectroscopy findings of typical and atypical intracranial meningiomas. Eur J Radiol 2006; 60 (1) 48-55
  • 93 Lippitz B, Cremerius U, Mayfrank L , et al. PET-study of intracranial meningiomas: correlation with histopathology, cellularity and proliferation rate. Acta Neurochir Suppl (Wien) 1996; 65: 108-111
  • 94 Thiele EA. Managing and understanding epilepsy in tuberous sclerosis complex. Epilepsia 2010; 51 (Suppl. 01) 90-91
  • 95 McMurdo Jr SK, Moore SG, Brant-Zawadzki M , et al. MR imaging of intracranial tuberous sclerosis. AJR Am J Roentgenol 1987; 148 (4) 791-796
  • 96 Szelies B, Herholz K, Heiss WD , et al. Hypometabolic cortical lesions in tuberous sclerosis with epilepsy: demonstration by positron emission tomography. J Comput Assist Tomogr 1983; 7 (6) 946-953
  • 97 Koh S, Jayakar P, Dunoyer C , et al. Epilepsy surgery in children with tuberous sclerosis complex: presurgical evaluation and outcome. Epilepsia 2000; 41 (9) 1206-1213
  • 98 Kamimura T, Tohyama J, Oishi M , et al. Magnetoencephalography in patients with tuberous sclerosis and localization-related epilepsy. Epilepsia 2006; 47 (6) 991-997
  • 99 Riela AR, Stump DA, Roach ES, McLean Jr WT, Garcia JC. Regional cerebral blood flow characteristics of the Sturge-Weber syndrome. Pediatr Neurol 1985; 1 (2) 85-90
  • 100 Kotagal P. Epilepsy in the setting of neurocutaneous syndromes. In: Wyllie E, , ed. The Treatment of Epilepsy: Principles & Practice. Philadelphia, PA: Lippincott Williams & Wilkins; 2001: 627-636
  • 101 Griffiths PD. Sturge-Weber syndrome revisited: the role of neuroradiology. Neuropediatrics 1996; 27 (6) 284-294
  • 102 Awad IA, Robinson Jr JR, Mohanty S, Estes ML. Mixed vascular malformations of the brain: clinical and pathogenetic considerations. Neurosurgery 1993; 33 (2) 179-188 , discussion 188
  • 103 Gross BA, Lin N, Du R, Day AL. The natural history of intracranial cavernous malformations. Neurosurg Focus 2011; 30 (6) E24
  • 104 Grossman RI, Yousem DM. Vascular diseases of the brain. In: Thrall JH, , ed. Neuroradiology: The Requisites. Philadelphia, PA: Elsevier; 2003: 231-234
  • 105 Ginat DT, Meyers SP. Intracranial lesions with high signal intensity on T1-weighted MR images: differential diagnosis. Radiographics 2012; 32 (2) 499-516
  • 106 Englot DJ, Han SJ, Lawton MT, Chang EF. Predictors of seizure freedom in the surgical treatment of supratentorial cavernous malformations. J Neurosurg 2011; 115 (6) 1169-1174
  • 107 Baumann CR, Schuknecht B, Lo Russo G , et al. Seizure outcome after resection of cavernous malformations is better when surrounding hemosiderin-stained brain also is removed. Epilepsia 2006; 47 (3) 563-566
  • 108 Hammen T, Romstöck J, Dörfler A, Kerling F, Buchfelder M, Stefan H. Prediction of postoperative outcome with special respect to removal of hemosiderin fringe: a study in patients with cavernous haemangiomas associated with symptomatic epilepsy. Seizure 2007; 16 (3) 248-253
  • 109 Stavrou I, Baumgartner C, Frischer JM, Trattnig S, Knosp E. Long-term seizure control after resection of supratentorial cavernomas: a retrospective single-center study in 53 patients. Neurosurgery 2008; 63 (5) 888-896 , discussion 897
  • 110 Barry E. Posttraumatic epilepsy. In: Wyllie E, , ed. The Treatment of Epilepsy: Principles & Practice. Philadelphia, PA: Lippincott Williams & Wilkins; 2001: 609-613
  • 111 Asikainen I, Kaste M, Sarna S. Early and late posttraumatic seizures in traumatic brain injury rehabilitation patients: brain injury factors causing late seizures and influence of seizures on long-term outcome. Epilepsia 1999; 40 (5) 584-589
  • 112 Grossman RI, Yousem DM. Head Trauma. In: Thrall JH, , ed. Neuroradiology: The Requisites. Philadelphia, PA: Elsevier; 2003: 243-246
  • 113 Shenton ME, Hamoda HM, Schneiderman JS , et al. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav 2012; 6 (2) 137-192
  • 114 Angeleri F, Majkowski J, Cacchiò G , et al. Posttraumatic epilepsy risk factors: one-year prospective study after head injury. Epilepsia 1999; 40 (9) 1222-1230
  • 115 Diaz-Arrastia R, Agostini MA, Frol AB , et al. Neurophysiologic and neuroradiologic features of intractable epilepsy after traumatic brain injury in adults. Arch Neurol 2000; 57 (11) 1611-1616
  • 116 Diaz-Arrastia R, Agostini MA, Madden CJ, Van Ness PC. Posttraumatic epilepsy: the endophenotypes of a human model of epileptogenesis. Epilepsia 2009; 50 (Suppl. 02) 14-20
  • 117 Scheid R, von Cramon DY. Clinical findings in the chronic phase of traumatic brain injury: data from 12 years' experience in the Cognitive Neurology Outpatient Clinic at the University of Leipzig. Dtsch Arztebl Int 2010; 107 (12) 199-205
  • 118 Gupta RK, Saksena S, Agarwal A , et al. Diffusion tensor imaging in late posttraumatic epilepsy. Epilepsia 2005; 46 (9) 1465-1471