Semin Neurol 2012; 32(04): 421-431
DOI: 10.1055/s-0032-1331813
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Positron Emission Tomography Applications in Clinical Neurology

Tarun Singhal
1   Division of General Neurology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
29 January 2013 (online)

Abstract

Positron emission tomography (PET) is a molecular imaging technique for developing maps of functional and biochemical activity in target tissues in vivo. PET has led to significant insights into nervous system biology, physiology, and pathophysiology in health and disease. Several of these insights and applications have a direct usefulness for the clinical neurologist. Although [F-18]fluorodeoxyglucose (FDG-) PET has remained a workhorse of PET imaging, many other radiolabeled biomolecules have been studied using PET. This article aims to provide an overview of current clinical usefulness of PET across the neurologic subspecialties including dementias, movement disorders, epilepsy, brain tumors, and neurologic infectious and inflammatory diseases.

 
  • References

  • 1 Phelps ME. PET: a biological imaging technique. Neurochem Res 1991; 16 (9) 929-940
  • 2 James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 2012; 92 (2) 897-965
  • 3 Jones T, Rabiner EA. PET Research Advisory Company. The development, past achievements, and future directions of brain PET. J Cereb Blood Flow Metab 2012; 32 (7) 1426-1454
  • 4 Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995; 36 (7) 1238-1248
  • 5 Friston KJ. Commentary and opinion: II. Statistical parametric mapping: ontology and current issues. J Cereb Blood Flow Metab 1995; 15 (3) 361-370
  • 6 Signorini M, Paulesu E, Friston K , et al. Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: A clinical validation of statistical parametric mapping. Neuroimage 1999; 9 (1) 63-80
  • 7 Tang CC, Poston KL, Eckert T , et al. Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol 2010; 9 (2) 149-158
  • 8 Eckert T, Tang C, Eidelberg D. Assessment of the progression of Parkinson's disease: a metabolic network approach. Lancet Neurol 2007; 6 (10) 926-932
  • 9 Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 1997; 42 (1) 85-94
  • 10 Silverman DH, Small GW, Chang CY , et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 2001; 286 (17) 2120-2127
  • 11 Herholz K, Heiss WD. Positron emission tomography in clinical neurology. Mol Imaging Biol 2004; 6 (4) 239-269
  • 12 Rabinovici GD, Rosen HJ, Alkalay A , et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology 2011; 77 (23) 2034-2042
  • 13 Gilman S, Koeppe RA, Little R , et al. Differentiation of Alzheimer's disease from dementia with Lewy bodies utilizing positron emission tomography with [18F]fluorodeoxyglucose and neuropsychological testing. Exp Neurol 2005; 191 (Suppl. 01) S95-S103
  • 14 Sultzer DL, Mahler ME, Cummings JL, Van Gorp WG, Hinkin CH, Brown C. Cortical abnormalities associated with subcortical lesions in vascular dementia. Clinical and position emission tomographic findings. Arch Neurol 1995; 52 (8) 773-780
  • 15 Zhang S, Han D, Tan X, Feng J, Guo Y, Ding Y. Diagnostic accuracy of 18 F-FDG and 11 C-PIB-PET for prediction of short-term conversion to Alzheimer's disease in subjects with mild cognitive impairment. Int J Clin Pract 2012; 66 (2) 185-198
  • 16 Klunk WE, Engler H, Nordberg A , et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 2004; 55 (3) 306-319
  • 17 Rowe CC, Villemagne VL. Brain amyloid imaging. J Nucl Med 2011; 52 (11) 1733-1740
  • 18 Clark CM, Pontecorvo MJ, Beach TG , et al; AV-45-A16 Study Group. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol 2012; 11 (8) 669-678
  • 19 Okello A, Koivunen J, Edison P , et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology 2009; 73 (10) 754-760
  • 20 Gilman S, Koeppe RA, Junck L, Kluin KJ, Lohman M, St Laurent RT. Patterns of cerebral glucose metabolism detected with positron emission tomography differ in multiple system atrophy and olivopontocerebellar atrophy. Ann Neurol 1994; 36 (2) 166-175
  • 21 Bohnen NI, Frey KA. The role of positron emission tomography imaging in movement disorders. Neuroimaging Clin N Am 2003; 13 (4) 791-803
  • 22 Sperling MR. Neuroimaging in epilepsy: contribution of MRI, PET and SPECT. Semin Neurol 1990; 10 (4) 349-356
  • 23 Steele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 1964; 10: 333-359
  • 24 Foster NL, Gilman S, Berent S, Morin EM, Brown MB, Koeppe RA. Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography. Ann Neurol 1988; 24 (3) 399-406
  • 25 Brooks DJ, Seppi K. Neuroimaging Working Group on MSA. Proposed neuroimaging criteria for the diagnosis of multiple system atrophy. Mov Disord 2009; 24 (7) 949-964
  • 26 Brooks DJ. Can imaging separate multiple system atrophy from Parkinson's disease?. Mov Disord 2012; 27 (1) 3-5
  • 27 Hosokawa S, Ichiya Y, Kuwabara Y , et al. Positron emission tomography in cases of chorea with different underlying diseases. J Neurol Neurosurg Psychiatry 1987; 50 (10) 1284-1287
  • 28 Gilman S, Frey KA, Koeppe RA , et al. Decreased striatal monoaminergic terminals in olivopontocerebellar atrophy and multiple system atrophy demonstrated with positron emission tomography. Ann Neurol 1996; 40 (6) 885-892
  • 29 Eidelberg D, Moeller JR, Dhawan V , et al. The metabolic anatomy of Parkinson's disease: complementary [18F]fluorodeoxyglucose and [18F]fluorodopa positron emission tomographic studies. Mov Disord 1990; 5 (3) 203-213
  • 30 Koeppe RA, Gilman S, Junck L, Wernette K, Frey KA. Differentiating Alzheimer's disease from dementia with Lewy bodies and Parkinson's disease with (+)-[11C]dihydrotetrabenazine positron emission tomography. Alzheimers Dement 2008; 4 (1) (Suppl. 01) S67-S76
  • 31 Lin KJ, Lin WY, Hsieh CJ , et al. Optimal scanning time window for 18F-FP-(+)-DTBZ (18F-AV-133) summed uptake measurements. Nucl Med Biol 2011; 38 (8) 1149-1155
  • 32 Kupsch A, Bajaj N, Weiland F , et al. Changes in clinical management and diagnosis following DaTscan SPECT imaging in patients with clinically uncertain parkinsonian syndromes: a 12-week follow-up study. Neurodegener Dis 2013; 11 (1) 22-32
  • 33 Brooks DJ, Ibanez V, Sawle GV , et al. Striatal D2 receptor status in patients with Parkinson's disease, striatonigral degeneration, and progressive supranuclear palsy, measured with 11C-raclopride and positron emission tomography. Ann Neurol 1992; 31 (2) 184-192
  • 34 Stoessl AJ, Brooks DJ, Eidelberg D. Milestones in neuroimaging. Mov Disord 2011; 26 (6) 868-978
  • 35 Eidelberg D. Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci 2009; 32 (10) 548-557
  • 36 Burke JF, Albin RL, Koeppe RA , et al. Assessment of mild dementia with amyloid and dopamine terminal positron emission tomography. Brain 2011; 134 (Pt 6) 1647-1657
  • 37 Gomperts SN, Rentz DM, Moran E , et al. Imaging amyloid deposition in Lewy body diseases. Neurology 2008; 71 (12) 903-910
  • 38 Kim YK, Lee DS, Lee SK , et al. Differential features of metabolic abnormalities between medial and lateral temporal lobe epilepsy: quantitative analysis of (18)F-FDG PET using SPM. J Nucl Med 2003; 44 (7) 1006-1012
  • 39 Casse R, Rowe CC, Newton M, Berlangieri SU, Scott AM. Positron emission tomography and epilepsy. Mol Imaging Biol 2002; 4 (5) 338-351
  • 40 Luat AF, Chugani HT. Molecular and diffusion tensor imaging of epileptic networks. Epilepsia 2008; 49 (Suppl. 03) 15-22
  • 41 Kumar A, Asano E, Chugani HT. α-[11C]-methyl-L-tryptophan PET for tracer localization of epileptogenic brain regions: clinical studies. Biomarkers Med 2011; 5 (5) 577-584
  • 42 Laufs H, Richardson MP, Salek-Haddadi A , et al. Converging PET and fMRI evidence for a common area involved in human focal epilepsies. Neurology 2011; 77 (9) 904-910
  • 43 Love C, Tomas MB, Tronco GG, Palestro CJ. FDG PET of infection and inflammation. Radiographics 2005; 25 (5) 1357-1368
  • 44 Hubele F, Bilger K, Kremer S, Imperiale A, Lioure B, Namer IJ. Sequential FDG PET and MRI findings in a case of human herpes virus 6 limbic encephalitis. Clin Nucl Med 2012; 37 (7) 716-717
  • 45 Leypoldt F, Buchert R, Kleiter I , et al. Fluorodeoxyglucose positron emission tomography in anti-N-methyl-D-aspartate receptor encephalitis: distinct pattern of disease. J Neurol Neurosurg Psychiatry 2012; 83 (7) 681-686
  • 46 Ances BM, Vitaliani R, Taylor RA , et al. Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates. Brain 2005; 128 (Pt 8) 1764-1777
  • 47 Darnell RB, Posner JB. A new cause of limbic encephalopathy. Brain 2005; 128 (Pt 8) 1745-1746
  • 48 Cash SS, Larvie M, Dalmau J. Case records of the Massachusetts General Hospital. Case 34-2011: A 75-year-old man with memory loss and partial seizures. N Engl J Med 2011; 365 (19) 1825-1833
  • 49 McKeon A, Apiwattanakul M, Lachance DH , et al. Positron emission tomography-computed tomography in paraneoplastic neurologic disorders: systematic analysis and review. Arch Neurol 2010; 67 (3) 322-329
  • 50 Dubey N, Miletich RS, Wasay M, Mechtler LL, Bakshi R. Role of fluorodeoxyglucose positron emission tomography in the diagnosis of neurosarcoidosis. J Neurol Sci 2002; 205 (1) 77-81
  • 51 Ng D, Jacobs M, Mantil J. Combined C-11 methionine and F-18 FDG PET imaging in a case of neurosarcoidosis. Clin Nucl Med 2006; 31 (7) 373-375
  • 52 Calabresi PA, Bohnen NI. Can PET imaging tell us what's the matter with the gray matter in multiple sclerosis?. Neurology 2012; 79 (6) 496-497
  • 53 Kosaka N, Tsuchida T, Uematsu H, Kimura H, Okazawa H, Itoh H. 18F-FDG PET of common enhancing malignant brain tumors. AJR Am J Roentgenol 2008; 190 (6) W365-9
  • 54 Petrirena GJ, Goldman S, Delattre JY. Advances in PET imaging of brain tumors: a referring physician's perspective. Curr Opin Oncol 2011; 23 (6) 617-623
  • 55 Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 2008; 10 (1) 1-18
  • 56 Padma MV, Said S, Jacobs M , et al. Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 2003; 64 (3) 227-237
  • 57 Voges J, Herholz K, Hölzer T , et al. 11C-methionine and 18F-2-fluorodeoxyglucose positron emission tomography: a tool for diagnosis of cerebral glioma and monitoring after brachytherapy with 125I seeds. Stereotact Funct Neurosurg 1997; 69 (1-4 Pt 2) 129-135
  • 58 Miwa K, Shinoda J, Yano H , et al. Discrepancy between lesion distributions on methionine PET and MR images in patients with glioblastoma multiforme: insight from a PET and MR fusion image study. J Neurol Neurosurg Psychiatry 2004; 75 (10) 1457-1462
  • 59 Pauleit D, Floeth F, Hamacher K , et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128 (Pt 3) 678-687
  • 60 Ackerman RH, Correia JA, Alpert NM , et al. Positron imaging in ischemic stroke disease using compounds labeled with oxygen 15. Initial results of clinicophysiologic correlations. Arch Neurol 1981; 38 (9) 537-543
  • 61 Tfelt-Hansen PC, Koehler PJ. One hundred years of migraine research: major clinical and scientific observations from 1910 to 2010. Headache 2011; 51 (5) 752-778
  • 62 Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 1997; 18 (4) 351-357
  • 63 Feigin A, Tang C, Ma Y , et al. Thalamic metabolism and symptom onset in preclinical Huntington's disease. Brain 2007; 130 (Pt 11) 2858-2867