Semin Neurol 2012; 32(04): 454-465
DOI: 10.1055/s-0032-1331815
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Cerebral Perfusion Imaging

Aaron R. Hochberg
1   Section of Neuroradiology, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
,
Geoffrey S. Young
1   Section of Neuroradiology, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
29 January 2013 (online)

Abstract

Recent advances are allowing computed tomography (CT) and magnetic resonance imaging (MRI) to add diagnostic information derived from microscopic-scale brain structure, pathology, and physiology to the gross pathologic information that has been the core of brain imaging diagnosis since the 1980s. Physiologic imaging with MR perfusion weighted imaging has joined MR diffusion imaging as an essential components of stroke and brain tumor MRI. At the same time, the volume scanning revolution in CT technology has dramatically decreased the radiation doses required for CT perfusion imaging by allowing routine simultaneous CT perfusion and noninvasive dynamic bone subtracted CT angiography (CTA) without a significant increase in radiation dose over conventional head CT–CTA alone. Although ongoing research and clinical trials is needed to define more precisely how these techniques can best be exploited to improve clinical care and patient outcomes, in the acute stroke and subarachnoid hemorrhage populations the radiation risk associated with CT perfusion imaging is negligible and the physiologic information promises significant patient safety benefits.

 
  • References

  • 1 Wintermark M, Lev MH. FDA investigates the safety of brain perfusion CT. AJNR Am J Neuroradiol 2010; 31 (1) 2-3
  • 2 Cianfoni A, Colosimo C, Basile M, Wintermark M, Bonomo L. Brain perfusion CT: principles, techniques, and clinical applications. Radiol Med (Torino) 2007; 112 (8) 1225-1243
  • 3 Miles KA. Brain perfusion: computed tomography applications. Neuroradiology 2004; 46 (220) (4) (Suppl. 02) s194-s200
  • 4 Konstas AA, Goldmakher GV, Lee TY, Lev MH. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: Theoretic basis. AJNR Am J Neuroradiol 2009; 30 (4) 662-668
  • 5 Allmendinger AM, Tang ER, Lui YW, Spektor V. Imaging of stroke: Part 1, Perfusion CT—overview of imaging technique, interpretation pearls, and common pitfalls. AJR Am J Roentgenol 2012; 198 (1) 52-62
  • 6 Lansberg MG, Straka M, Kemp S , and the DEFUSE 2 study investigators. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol 2012; 11: 860-867 Available at: http://dx.doi.org/10.1016/S1474-4422(12)70203-X . Accessed October 22, 2012
  • 7 Konstas AA, Wintermark M, Lev MH. CT perfusion imaging in acute stroke. Neuroimaging Clin N Am 2011; 21 (2) 215-238 , ix
  • 8 Konstas AA, Goldmakher GV, Lee TY, Lev MH. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 2: technical implementations. AJNR Am J Neuroradiol 2009; 30 (5) 885-892
  • 9 Orrison Jr WW, Snyder KV, Hopkins LN , et al. Whole-brain dynamic CT angiography and perfusion imaging. Clin Radiol 2011; 66 (6) 566-574
  • 10 Barfett J, Willems PW, Geibprasert S, Bacigaluppi S, Krings T. Dynamic CT. Angiography and CT perfusion employing a 320 detector row CT. Klin Neuroradiol 2009; 19 (3) 187-196
  • 11 Wintermark M, Smith WS, Ko NU, Quist M, Schnyder P, Dillon WP. Dynamic perfusion CT: optimizing the temporal resolution and contrast volume for calculation of perfusion CT parameters in stroke patients. AJNR Am J Neuroradiol 2004; 25 (5) 720-729
  • 12 Mnyusiwalla A, Aviv RI, Symons SP. Radiation dose from multidetector row CT imaging for acute stroke. Neuroradiology 2009; 51 (10) 635-640
  • 13 Schilham A, van der Molen AJ, Prokop M, de Jong HW. Overranging at multisection CT: an underestimated source of excess radiation exposure. Radiographics 2010; 30 (4) 1057-1067
  • 14 Kilic K, Erbas G, Guryildirim M, Arac M, Ilgit E, Coskun B. Lowering the dose in head CT using adaptive statistical iterative reconstruction. AJNR Am J Neuroradiol 2011; 32 (9) 1578-1582
  • 15 Carandang R, Seshadri S, Beiser A , et al. Trends in incidence, lifetime risk, severity, and 30-day mortality of stroke over the past 50 years. JAMA 2006; 296 (24) 2939-2946 10.1001/jama.296.24.2939
  • 16 Feng W, Hendry RM, Adams RJ. Risk of recurrent stroke, myocardial infarction, or death in hospitalized stroke patients. Neurology 2010; 74 (7) 588-593
  • 17 Sarti C, Stegmayr B, Tolonen H, Mähönen M, Tuomilehto J, Asplund K. WHO MONICA Project. Are changes in mortality from stroke caused by changes in stroke event rates or case fatality? Results from the WHO MONICA Project. Stroke 2003; 34 (8) 1833-1840
  • 18 Nogueira RG, Liebeskind DS, Sung G, Duckwiler G, Smith WS. MERCI; Multi MERCI Writing Committee. Predictors of good clinical outcomes, mortality, and successful revascularization in patients with acute ischemic stroke undergoing thrombectomy: pooled analysis of the Mechanical Embolus Removal in Cerebral Ischemia (MERCI) and Multi MERCI Trials. Stroke 2009; 40 (12) 3777-3783
  • 19 Shetty SK, Lev MH. CT perfusion in acute stroke. Neuroimaging Clin N Am 2005; 15 (3) 481-501 , ix
  • 20 Wintermark M, Meuli R, Browaeys P , et al. Comparison of CT perfusion and angiography and MRI in selecting stroke patients for acute treatment. Neurology 2007; 68 (9) 694-697
  • 21 Copen WA, Schaefer PW, Wu O. MR perfusion imaging in acute ischemic stroke. Neuroimaging Clin N Am 2011; 21 (2) 259-283 , x
  • 22 Petrella JR, Provenzale JM. MR perfusion imaging of the brain: techniques and applications. AJR Am J Roentgenol 2000; 175 (1) 207-219
  • 23 Barbier EL, Lamalle L, Décorps M. Methodology of brain perfusion imaging. J Magn Reson Imaging 2001; 13 (4) 496-520
  • 24 Martin DR, Krishnamoorthy SK, Kalb B , et al. Decreased incidence of NSF in patients on dialysis after changing gadolinium contrast-enhanced MRI protocols. J Magn Reson Imaging 2010; 31 (2) 440-446
  • 25 Altun E, Martin DR, Wertman R, Lugo-Somolinos A, Fuller III ER, Semelka RC. Nephrogenic systemic fibrosis: change in incidence following a switch in gadolinium agents and adoption of a gadolinium policy—report from two U.S. universities. Radiology 2009; 253 (3) 689-696
  • 26 Leiva-Salinas C, Provenzale JP, Kudo K, Sasaki M, Wintermark M. The alphabet soup of perfusion CT and MR imaging: terminology revisited and clarified in five questions. Neuroradiology 2012; 54 (9) 907-918
  • 27 Furukawa M, Kashiwagi S, Matsunaga N, Suzuki M, Kishimoto K, Shirao S. Evaluation of cerebral perfusion parameters measured by perfusion CT in chronic cerebral ischemia: comparison with xenon CT. J Comput Assist Tomogr 2002; 26 (2) 272-278
  • 28 Gillard JH, Antoun NM, Burnet NG, Pickard JD. Reproducibility of quantitative CT perfusion imaging. Br J Radiol 2001; 74 (882) 552-555
  • 29 Kudo K, Sasaki M, Østergaard L , et al. Susceptibility of Tmax to tracer delay on perfusion analysis: quantitative evaluation of various deconvolution algorithms using digital phantoms. J Cereb Blood Flow Metab 2011; 31 (3) 908-912
  • 30 Zaro-Weber O, Moeller-Hartmann W, Heiss WD, Sobesky J. Maps of time to maximum and time to peak for mismatch definition in clinical stroke studies validated with positron emission tomography. Stroke 2010; 41 (12) 2817-2821
  • 31 Olivot JM, Mlynash M, Zaharchuk G , et al. Perfusion MRI (Tmax and MTT) correlation with xenon CT cerebral blood flow in stroke patients. Neurology 2009; 72 (13) 1140-1145
  • 32 Schaefer PW, Roccatagliata L, Ledezma C , et al. First-pass quantitative CT perfusion identifies thresholds for salvageable penumbra in acute stroke patients treated with intra-arterial therapy. AJNR Am J Neuroradiol 2006; 27 (1) 20-25
  • 33 Parsons MW, Pepper EM, Bateman GA, Wang Y, Levi CR. Identification of the penumbra and infarct core on hyperacute noncontrast and perfusion CT. Neurology 2007; 68 (10) 730-736
  • 34 National Institute of Neurological Disorders and Stroke rt-PAStroke Study Group. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 1995; 333: 1581-1587
  • 35 Del Zoppo GJ, Saver JL, Jauch EC, Adams Jr HP. American Heart Association Stroke Council. Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. Stroke 2009; 40 (8) 2945-2948
  • 36 Wintermark M, Flanders AE, Velthuis B , et al. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 2006; 37 (4) 979-985
  • 37 Albers GW, Thijs VN, Wechsler L , et al; DEFUSE Investigators. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 2006; 60 (5) 508-517
  • 38 Davis SM, Donnan GA, Parsons MW , et al; EPITHET investigators. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 2008; 7 (4) 299-309
  • 39 Hacke W, Albers G, Al-Rawi Y , et al; DIAS Study Group. The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 2005; 36 (1) 66-73
  • 40 Hacke W, Furlan AJ, Al-Rawi Y , et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 2009; 8 (2) 141-150
  • 41 Lees KR, Bluhmki E, von Kummer R , et al; ECASS, ATLANTIS, NINDS and EPITHET rt-PA Study Group . Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 2010; 375 (9727) 1695-1703
  • 42 Yoo AJ, Pulli B, Gonzalez RG. Imaging-based treatment selection for intravenous and intra-arterial stroke therapies: a comprehensive review. Expert Rev Cardiovasc Ther 2011; 9 (7) 857-876
  • 43 Waaijer A, van der Schaaf IC, Velthuis BK , et al. Reproducibility of quantitative CT brain perfusion measurements in patients with symptomatic unilateral carotid artery stenosis. AJNR Am J Neuroradiol 2007; 28 (5) 927-932
  • 44 Waaijer A, van Leeuwen MS, van Osch MJ , et al. Changes in cerebral perfusion after revascularization of symptomatic carotid artery stenosis: CT measurement. Radiology 2007; 245 (2) 541-548
  • 45 Smith LM, Elkins JS, Dillon WP, Schaeffer S, Wintermark M. Perfusion-CT assessment of the cerebrovascular reserve: a revisit to the acetazolamide challenges. J Neuroradiol 2008; 35 (3) 157-164
  • 46 Aralasmak A, Akyuz M, Ozkaynak C, Sindel T, Tuncer R. CT angiography and perfusion imaging in patients with subarachnoid hemorrhage: correlation of vasospasm to perfusion abnormality. Neuroradiology 2009; 51 (2) 85-93
  • 47 Sanelli PC, Jou A, Gold R , et al. Using CT perfusion during the early baseline period in aneurysmal subarachnoid hemorrhage to assess for development of vasospasm. Neuroradiology 2011; 53 (6) 425-434
  • 48 Hänggi D, Turowski B, Beseoglu K, Yong M, Steiger HJ. Intra-arterial nimodipine for severe cerebral vasospasm after aneurysmal subarachnoid hemorrhage: influence on clinical course and cerebral perfusion. AJNR Am J Neuroradiol 2008; 29 (6) 1053-1060
  • 49 Jain R. Perfusion CT imaging of brain tumors: an overview. AJNR Am J Neuroradiol 2011; 32 (9) 1570-1577
  • 50 Young GS, Stauss J, Mukundan S. Advanced physiologic imaging of adult brain tumor. In: Rees J, Wen P, , eds. Neuro-Oncology. The Blue Books of Neurology Series. Philadelphia PA: Elsevier; 2010: 71-98
  • 51 Rizzo L, Crasto SG, Moruno PG , et al. Role of diffusion- and perfusion-weighted MR imaging for brain tumour characterisation. Radiol Med (Torino) 2009; 114 (4) 645-659
  • 52 Thompson G, Mills SJ, Stivaros SM, Jackson A. Imaging of brain tumors: perfusion/permeability. Neuroimaging Clin N Am 2010; 20 (3) 337-353
  • 53 Romano A, Rossi Espagnet MC, Calabria LF , et al. Clinical applications of dynamic susceptibility contrast perfusion-weighted MR imaging in brain tumours. Radiol Med 2012; 117 (3) 445-460
  • 54 Sugahara T, Korogi Y, Kochi M , et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 1998; 171 (6) 1479-1486
  • 55 Maia Jr AC, Malheiros SM, da Rocha AJ , et al. MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR Am J Neuroradiol 2005; 26 (4) 777-783
  • 56 Young GS, Setayesh K. Spin-echo echo-planar perfusion MR imaging in the differential diagnosis of solitary enhancing brain lesions: distinguishing solitary metastases from primary glioma. AJNR Am J Neuroradiol 2009; 30 (3) 575-577
  • 57 Sorensen AG, Batchelor TT, Zhang WT , et al. A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 2009; 69 (13) 5296-5300
  • 58 Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T. Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol 2006; 58 (3) 394-403
  • 59 Yang S, Law M, Zagzag D , et al. Dynamic contrast-enhanced perfusion MR imaging measurements of endothelial permeability: differentiation between atypical and typical meningiomas. AJNR Am J Neuroradiol 2003; 24 (8) 1554-1559
  • 60 Hartmann M, Heiland S, Harting I , et al. Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging. Neurosci Lett 2003; 338 (2) 119-122
  • 61 Rollin N, Guyotat J, Streichenberger N, Honnorat J, Tran Minh VA, Cotton F. Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors. Neuroradiology 2006; 48 (3) 150-159
  • 62 Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 2002; 223 (1) 11-29
  • 63 Cha S, Lupo JM, Chen MH , et al. Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2007; 28 (6) 1078-1084
  • 64 Haris M, Gupta RK, Singh A , et al. Differentiation of infective from neoplastic brain lesions by dynamic contrast-enhanced MRI. Neuroradiology 2008; 50 (6) 531-540
  • 65 Erdogan C, Hakyemez B, Yildirim N, Parlak M. Brain abscess and cystic brain tumor: discrimination with dynamic susceptibility contrast perfusion-weighted MRI. J Comput Assist Tomogr 2005; 29 (5) 663-667
  • 66 Caseiras GB, Chheang S, Babb J , et al. Relative cerebral blood volume measurements of low-grade gliomas predict patient outcome in a multi-institution setting. Eur J Radiol 2010; 73 (2) 215-220
  • 67 Danchaivijitr N, Waldman AD, Tozer DJ , et al. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation?. Radiology 2008; 247 (1) 170-178
  • 68 Emblem KE, Scheie D, Due-Tonnessen P , et al. Histogram analysis of MR imaging-derived cerebral blood volume maps: combined glioma grading and identification of low-grade oligodendroglial subtypes. AJNR Am J Neuroradiol 2008; 29 (9) 1664-1670
  • 69 Hu LS, Baxter LC, Smith KA , et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 2009; 30 (3) 552-558
  • 70 Norden AD, Young GS, Setayesh K , et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 2008; 70 (10) 779-787