Semin Neurol 2012; 32(04): 466-475
DOI: 10.1055/s-0032-1331816
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Clinical Applications and Future Directions of Functional MRI

Daniel A. Orringer
1   Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
,
David R. Vago
1   Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
,
Alexandra J. Golby
1   Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
29 January 2013 (online)

Abstract

First described for use in mapping the human visual cortex in 1991, functional magnetic resonance imaging (fMRI) is based on blood-oxygen level dependent (BOLD) changes in cortical regions that occur during specific tasks. Typically, an overabundance of oxygenated (arterial) blood is supplied during activation of brain areas. Consequently, the venous outflow from the activated areas contains a higher concentration of oxyhemoglobin, which changes the paramagnetic properties of the tissue that can be detected during a T2-star acquisition. fMRI data can be acquired in response to specific tasks or in the resting state. fMRI has been widely applied to studying physiologic and pathophysiologic diseases of the brain. This review will discuss the most common current clinical applications of fMRI as well as emerging directions.

 
  • References

  • 1 Belliveau JW, Kennedy Jr DN, McKinstry RC , et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 1991; 254 (5032) 716-719
  • 2 Hall WA, Kim P, Truwit CL. Functional magnetic resonance imaging-guided brain tumor resection. Top Magn Reson Imaging 2009; 19 (4) 205-212
  • 3 Shinoura N, Yamada R, Suzuki Y , et al. Functional magnetic resonance imaging is more reliable than somatosensory evoked potential or mapping for the detection of the primary motor cortex in proximity to a tumor. Stereotact Funct Neurosurg 2007; 85 (2–3) 99-105
  • 4 Signorelli F, Guyotat J, Schneider F, Isnard J, Bret P. Technical refinements for validating functional MRI-based neuronavigation data by electrical stimulation during cortical language mapping. Minim Invasive Neurosurg 2003; 46 (5) 265-268
  • 5 Signorelli F, Guyotat J, Isnard J, Schneider F, Mohammedi R, Bret P. The value of cortical stimulation applied to the surgery of malignant gliomas in language areas. Neurol Sci 2001; 22 (1) 3-10
  • 6 Atlas SW, Howard II RS, Maldjian J , et al. Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery 1996; 38 (2) 329-338
  • 7 Bizzi A, Blasi V, Falini A , et al. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology 2008; 248 (2) 579-589
  • 8 Ota T, Kamada K, Aoki S, Saito N. Visualization of calculation centres by functional MRI for neurosurgery. Br J Neurosurg 2009; 23 (4) 406-411
  • 9 Kapsalakis IZ, Kapsalaki EZ, Gotsis ED , et al. Preoperative evaluation with FMRI of patients with intracranial gliomas. Radiol Res Pract 2012; 2012: 727810
  • 10 Roux FE, Boulanouar K, Lotterie JA, Mejdoubi M, LeSage JP, Berry I. Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 2003; 52 (6) 1335-1345 , discussion 1345–1347
  • 11 Jiménez De La Peña M, Gil Robles S, Recio Rodríguez M, Ruiz Ocaña C, Martínez De Vega V. Cortical and subcortical mapping of language areas: correlation of functional MRI and tractography in a 3T scanner with intraoperative cortical and subcortical stimulation in patients with brain tumors located in eloquent areas. Radiologia 2012;
  • 12 Nimsky C, Ganslandt O, Buchfelder M, Fahlbusch R. Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. Neurol Res 2006; 28 (5) 482-487
  • 13 Hall WA, Liu H, Truwit CL. Functional magnetic resonance imaging-guided resection of low-grade gliomas. Surg Neurol 2005; 64 (1) 20-27 , discussion 27
  • 14 Roessler K, Donat M, Lanzenberger R , et al. Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry 2005; 76 (8) 1152-1157
  • 15 Gasser T, Ganslandt O, Sandalcioglu E, Stolke D, Fahlbusch R, Nimsky C. Intraoperative functional MRI: implementation and preliminary experience. Neuroimage 2005; 26 (3) 685-693
  • 16 Gasser T, Szelenyi A, Senft C , et al. Intraoperative MRI and functional mapping. Acta Neurochir Suppl (Wien) 2011; 109: 61-65
  • 17 Nimsky C. Intraoperative acquisition of fMRI and DTI. Neurosurg Clin N Am 2011; 22 (2) 269-277, ix ix.
  • 18 Gasco J, Tummala S, Mahajan NM, Weinberg JS, Prabhu SS. Simultaneous use of functional tractography, neuronavigation-integrated subcortical white matter stimulation and intraoperative magnetic resonance imaging in glioma surgery: technical note. Stereotact Funct Neurosurg 2009; 87 (6) 395-398
  • 19 Lüdemann L, Förschler A, Grieger W, Zimmer C. BOLD signal in the motor cortex shows a correlation with the blood volume of brain tumors. J Magn Reson Imaging 2006; 23 (4) 435-443
  • 20 Hou BL, Bradbury M, Peck KK, Petrovich NM, Gutin PH, Holodny AI. Effect of brain tumor neovasculature defined by rCBV on BOLD fMRI activation volume in the primary motor cortex. Neuroimage 2006; 32 (2) 489-497
  • 21 Chen CM, Hou BL, Holodny AI. Effect of age and tumor grade on BOLD functional MR imaging in preoperative assessment of patients with glioma. Radiology 2008; 248 (3) 971-978
  • 22 Kim MJ, Holodny AI, Hou BL , et al. The effect of prior surgery on blood oxygen level-dependent functional MR imaging in the preoperative assessment of brain tumors. AJNR Am J Neuroradiol 2005; 26 (8) 1980-1985
  • 23 Holodny AI, Schulder M, Liu WC, Maldjian JA, Kalnin AJ. Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 1999; 20 (4) 609-612
  • 24 Ulmer JL, Krouwer HG, Mueller WM, Ugurel MS, Kocak M, Mark LP. Pseudo-reorganization of language cortical function at fMR imaging: a consequence of tumor-induced neurovascular uncoupling. AJNR Am J Neuroradiol 2003; 24 (2) 213-217
  • 25 Sakatani K, Murata Y, Fukaya C, Yamamoto T, Katayama Y. BOLD functional MRI may overlook activation areas in the damaged brain. Acta Neurochir Suppl (Wien) 2003; 87: 59-62
  • 26 Krings T, Reinges MH, Erberich S , et al. Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry 2001; 70 (6) 749-760
  • 27 Swanson SJ, Sabsevitz DS, Hammeke TA, Binder JR. Functional magnetic resonance imaging of language in epilepsy. Neuropsychol Rev 2007; 17 (4) 491-504
  • 28 Binder JR. Functional MRI is a valid noninvasive alternative to Wada testing. Epilepsy Behav 2011; 20 (2) 214-222
  • 29 Suarez RO, Whalen S, Nelson AP , et al. Threshold-independent functional MRI determination of language dominance: a validation study against clinical gold standards. Epilepsy Behav 2009; 16 (2) 288-297
  • 30 Sabsevitz DS, Swanson SJ, Hammeke TA , et al. Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology 2003; 60 (11) 1788-1792
  • 31 Binder JR, Sabsevitz DS, Swanson SJ, Hammeke TA, Raghavan M, Mueller WM. Use of preoperative functional MRI to predict verbal memory decline after temporal lobe epilepsy surgery. Epilepsia 2008; 49 (8) 1377-1394
  • 32 Wagner K, Hader C, Metternich B, Buschmann F, Schwarzwald R, Schulze-Bonhage A. Who needs a Wada test? Present clinical indications for amobarbital procedures. J Neurol Neurosurg Psychiatry 2012; 83 (5) 503-509
  • 33 Janszky J, Mertens M, Janszky I, Ebner A, Woermann FG. Left-sided interictal epileptic activity induces shift of language lateralization in temporal lobe epilepsy: an fMRI study. Epilepsia 2006; 47 (5) 921-927
  • 34 Waites AB, Briellmann RS, Saling MM, Abbott DF, Jackson GD. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol 2006; 59 (2) 335-343
  • 35 Wilke M, Pieper T, Lindner K , et al. Clinical functional MRI of the language domain in children with epilepsy. Hum Brain Mapp 2011; 32 (11) 1882-1893
  • 36 Giussani C, Roux FE, Ojemann J, Sganzerla EP, Pirillo D, Papagno C. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery 2010; 66 (1) 113-120
  • 37 Spiers HJ, Burgess N, Maguire EA , et al. Unilateral temporal lobectomy patients show lateralized topographical and episodic memory deficits in a virtual town. Brain 2001; 124 (Pt 12) 2476-2489
  • 38 Lee TM, Yip JT, Jones-Gotman M. Memory deficits after resection from left or right anterior temporal lobe in humans: a meta-analytic review. Epilepsia 2002; 43 (3) 283-291
  • 39 Powell HW, Richardson MP, Symms MR , et al. Preoperative fMRI predicts memory decline following anterior temporal lobe resection. J Neurol Neurosurg Psychiatry 2008; 79 (6) 686-693
  • 40 Frings L, Wagner K, Halsband U, Schwarzwald R, Zentner J, Schulze-Bonhage A. Lateralization of hippocampal activation differs between left and right temporal lobe epilepsy patients and correlates with postsurgical verbal learning decrement. Epilepsy Res 2008; 78 (2–3) 161-170
  • 41 Köylü B, Walser G, Ischebeck A, Ortler M, Benke T. Functional imaging of semantic memory predicts postoperative episodic memory functions in chronic temporal lobe epilepsy. Brain Res 2008; 1223: 73-81
  • 42 Cheung MC, Chan AS, Lam JM, Chan YL. Pre- and postoperative fMRI and clinical memory performance in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 2009; 80 (10) 1099-1106
  • 43 Dupont S, Duron E, Samson S , et al. Functional MR imaging or Wada test: which is the better predictor of individual postoperative memory outcome?. Radiology 2010; 255 (1) 128-134
  • 44 Salek-Haddadi A, Diehl B, Hamandi K , et al. Hemodynamic correlates of epileptiform discharges: an EEG-fMRI study of 63 patients with focal epilepsy. Brain Res 2006; 1088 (1) 148-166
  • 45 Zijlmans M, Huiskamp G, Hersevoort M, Seppenwoolde JH, van Huffelen AC, Leijten FS. EEG-fMRI in the preoperative work-up for epilepsy surgery. Brain 2007; 130 (Pt 9) 2343-2353
  • 46 Moeller F, Tyvaert L, Nguyen DK , et al. EEG-fMRI: adding to standard evaluations of patients with nonlesional frontal lobe epilepsy. Neurology 2009; 73 (23) 2023-2030
  • 47 Golby A, Silverberg G, Race E , et al. Memory encoding in Alzheimer's disease: an fMRI study of explicit and implicit memory. Brain 2005; 128 (Pt 4) 773-787
  • 48 Grön G, Bittner D, Schmitz B, Wunderlich AP, Riepe MW. Subjective memory complaints: objective neural markers in patients with Alzheimer's disease and major depressive disorder. Ann Neurol 2002; 51 (4) 491-498
  • 49 Sperling R, Chua E, Cocchiarella A , et al. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage 2003; 20 (2) 1400-1410
  • 50 Sperling RA, Bates JF, Chua EF , et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease. J Neurol Neurosurg Psychiatry 2003; 74 (1) 44-50
  • 51 Schwindt GC, Black SE. Functional imaging studies of episodic memory in Alzheimer's disease: a quantitative meta-analysis. Neuroimage 2009; 45 (1) 181-190
  • 52 Wierenga CE, Stricker NH, McCauley A , et al. Altered brain response for semantic knowledge in Alzheimer's disease. Neuropsychologia 2011; 49 (3) 392-404
  • 53 Celone KA, Calhoun VD, Dickerson BC , et al. Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis. J Neurosci 2006; 26 (40) 10222-10231
  • 54 Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease. J Neurosci 2003; 23 (3) 986-993
  • 55 Price CJ, Crinion J, Friston KJ. Design and analysis of fMRI studies with neurologically impaired patients. J Magn Reson Imaging 2006; 23 (6) 816-826
  • 56 Ries ML, Carlsson CM, Rowley HA , et al. Magnetic resonance imaging characterization of brain structure and function in mild cognitive impairment: a review. J Am Geriatr Soc 2008; 56 (5) 920-934
  • 57 Johnson SC, Schmitz TW, Moritz CH , et al. Activation of brain regions vulnerable to Alzheimer's disease: the effect of mild cognitive impairment. Neurobiol Aging 2006; 27 (11) 1604-1612
  • 58 Machulda MM, Ward HA, Borowski B , et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients. Neurology 2003; 61 (4) 500-506
  • 59 Petrella JR, Prince SE, Wang L, Hellegers C, Doraiswamy PM. Prognostic value of posteromedial cortex deactivation in mild cognitive impairment. PLoS ONE 2007; 2 (10) e1104
  • 60 Small SA, Perera GM, DeLaPaz R, Mayeux R, Stern Y. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer's disease. Ann Neurol 1999; 45 (4) 466-472
  • 61 Dickerson BC, Salat DH, Bates JF , et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol 2004; 56 (1) 27-35
  • 62 Dickerson BC, Salat DH, Greve DN , et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005; 65 (3) 404-411
  • 63 Hämäläinen A, Pihlajamäki M, Tanila H , et al. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging 2007; 28 (12) 1889-1903
  • 64 Dickerson BC, Sperling RA. Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer's disease: insights from functional MRI studies. Neuropsychologia 2008; 46 (6) 1624-1635
  • 65 Chhatwal JP, Sperling RA. Functional MRI of mnemonic networks across the spectrum of normal aging, mild cognitive impairment, and Alzheimer's disease. J Alzheimers Dis 2012; 31 (0) S155-S167
  • 66 Sorg C, Riedl V, Mühlau M , et al. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc Natl Acad Sci U S A 2007; 104 (47) 18760-18765
  • 67 Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004; 101 (13) 4637-4642
  • 68 Petrella JR, Sheldon FC, Prince SE, Calhoun VD, Doraiswamy PM. Default mode network connectivity in stable vs progressive mild cognitive impairment. Neurology 2011; 76 (6) 511-517
  • 69 Saykin AJ, Wishart HA, Rabin LA , et al. Cholinergic enhancement of frontal lobe activity in mild cognitive impairment. Brain 2004; 127 (Pt 7) 1574-1583
  • 70 Shanks MF, McGeown WJ, Forbes-McKay KE, Waiter GD, Ries M, Venneri A. Regional brain activity after prolonged cholinergic enhancement in early Alzheimer's disease. Magn Reson Imaging 2007; 25 (6) 848-859
  • 71 McAllister TW, Saykin AJ, Flashman LA , et al. Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology 1999; 53 (6) 1300-1308
  • 72 McAllister TW, Sparling MB, Flashman LA, Guerin SJ, Mamourian AC, Saykin AJ. Differential working memory load effects after mild traumatic brain injury. Neuroimage 2001; 14 (5) 1004-1012
  • 73 McAllister TW, Flashman LA, McDonald BC, Saykin AJ. Mechanisms of working memory dysfunction after mild and moderate TBI: evidence from functional MRI and neurogenetics. J Neurotrauma 2006; 23 (10) 1450-1467
  • 74 Stulemeijer M, Vos PE, van der Werf S, van Dijk G, Rijpkema M, Fernández G. How mild traumatic brain injury may affect declarative memory performance in the post-acute stage. J Neurotrauma 2010; 27 (9) 1585-1595
  • 75 Mayer AR, Mannell MV, Ling J , et al. Auditory orienting and inhibition of return in mild traumatic brain injury: a FMRI study. Hum Brain Mapp 2009; 30 (12) 4152-4166
  • 76 Witt ST, Lovejoy DW, Pearlson GD, Stevens MC. Decreased prefrontal cortex activity in mild traumatic brain injury during performance of an auditory oddball task. Brain Imaging Behav 2010; 4 (3–4) 232-247
  • 77 Scheibel RS, Newsome MR, Troyanskaya M , et al. Altered brain activation in military personnel with one or more traumatic brain injuries following blast. J Int Neuropsychol Soc 2012; 18 (1) 89-100
  • 78 Matthews SC, Strigo IA, Simmons AN, O'Connell RM, Reinhardt LE, Moseley SA. A multimodal imaging study in U.S. veterans of Operations Iraqi and Enduring Freedom with and without major depression after blast-related concussion. Neuroimage 2011; 54 (Suppl. 01) S69-S75
  • 79 McAllister TW, Flashman LA, McDonald BC , et al. Dopaminergic challenge with bromocriptine one month after mild traumatic brain injury: altered working memory and BOLD response. J Neuropsychiatry Clin Neurosci 2011; 23 (3) 277-286
  • 80 Bremner JD. Structural changes in the brain in depression and relationship to symptom recurrence. CNS Spectr 2002; 7 (2) 129-130 , 135–139
  • 81 Drevets WC, Ongür D, Price JL. Neuroimaging abnormalities in the subgenual prefrontal cortex: implications for the pathophysiology of familial mood disorders. Mol Psychiatry 1998; 3 (3) 220-226 , 190–191
  • 82 Lorenzetti V, Allen NB, Fornito A, Yücel M. Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J Affect Disord 2009; 117 (1–2) 1-17
  • 83 Vago DR, Epstein J, Catenaccio E, Stern E. Identification of neural targets for the treatment of psychiatric disorders: the role of functional neuroimaging. Neurosurg Clin N Am 2011; 22 (2) 279-305 , x
  • 84 Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 2008; 213 (1–2) 93-118
  • 85 Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology 2010; 35 (1) 192-216
  • 86 Sheline YI. Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 2003; 54 (3) 338-352
  • 87 Drevets WC, Gadde K, Krishnan KR. Neuroimaging studies of mood disorders. In: Charney DS, Nestler EJ, , eds. Neurobiology of Mental Illness. New York: Oxford University Press; 2004: 461-480
  • 88 Hasler G, Drevets WC, Manji HK, Charney DS. Discovering endophenotypes for major depression. Neuropsychopharmacology 2004; 29 (10) 1765-1781
  • 89 Mayberg HS, Brannan SK, Mahurin RK , et al. Cingulate function in depression: a potential predictor of treatment response. Neuroreport 1997; 8 (4) 1057-1061
  • 90 Drevets WC, Price JL, Simpson Jr JR , et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386 (6627) 824-827
  • 91 George MS, Ketter TA, Parekh PI , et al. Blunted left cingulate activation in mood disorder subjects during a response interference task (the Stroop). J Neuropsychiatry Clin Neurosci 1997; 9 (1) 55-63
  • 92 Anand A, Li Y, Wang Y , et al. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol Psychiatry 2005; 57 (10) 1079-1088
  • 93 Kennedy SH, Evans KR, Krüger S , et al. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry 2001; 158 (6) 899-905
  • 94 Mayberg HS. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 1997; 9 (3) 471-481
  • 95 Beauregard M, Leroux JM, Bergman S , et al. The functional neuroanatomy of major depression: an fMRI study using an emotional activation paradigm. Neuroreport 1998; 9 (14) 3253-3258
  • 96 George MS, Ketter TA, Parekh PI, Post RM. Regional blood-flow correlates of transient self-induced sadness or happiness. Biol Psychiatry 1994; 35 (9) 647
  • 97 Fu CH, Williams SC, Cleare AJ , et al. Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biol Psychiatry 2008; 64 (6) 505-512
  • 98 Damasio AR. Descartes' Error: Emotion, Reason, and the Human Brain. New York: Avon Books; 1994
  • 99 Berman MG, Peltier S, Nee DE, Kross E, Deldin PJ, Jonides J. Depression, rumination and the default network. Soc Cogn Affect Neurosci 2011; 6 (5) 548-555
  • 100 Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biol Psychiatry 2003; 54 (5) 504-514
  • 101 Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 2007; 10 (9) 1116-1124
  • 102 Epstein J, Pan H, Kocsis JH , et al. Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. Am J Psychiatry 2006; 163 (10) 1784-1790
  • 103 Heller AS, Johnstone T, Shackman AJ , et al. Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proc Natl Acad Sci U S A 2009; 106 (52) 22445-22450
  • 104 Goldapple K, Segal Z, Garson C , et al. Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry 2004; 61 (1) 34-41
  • 105 Bewernick BH, Hurlemann R, Matusch A , et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 2010; 67 (2) 110-116
  • 106 Blomstedt P, Sjoberg RL, Hansson M, Bodlund O, Hariz MI. Deep brain stimulation in the treatment of depression. Acta Psychiatr Scand 2011; 123 (1) 4-11
  • 107 Mayberg HS, Lozano AM, Voon V , et al. Deep brain stimulation for treatment-resistant depression. Neuron 2005; 45 (5) 651-660