Senologie - Zeitschrift für Mammadiagnostik und -therapie 2013; 10(2): 114-119
DOI: 10.1055/s-0033-1335573
Wissenschaftliche Arbeit
© Georg Thieme Verlag KG Stuttgart · New York

Mammographic Density and Prediction of Nodal Status in Breast Cancer Patients

Einfluss der mammografischen Dichte auf die Prädiktion des Nodalstatus bei Mammakarzinompatientinnen
C. C. Hack
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University, Erlangen-Nuremberg, Erlangen
,
L. Häberle
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University, Erlangen-Nuremberg, Erlangen
,
K. Geisler
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University, Erlangen-Nuremberg, Erlangen
,
R. Schulz-Wendtland
2   Institut für gynäkologische Radiologie, Universitätsklinikum Erlangen, Erlangen
,
A. Hartmann
3   Institute of Pathology, University Hospital Erlangen, Erlangen
,
P. A. Fasching
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University, Erlangen-Nuremberg, Erlangen
,
M. Uder
2   Institut für gynäkologische Radiologie, Universitätsklinikum Erlangen, Erlangen
,
D. L. Wachter
3   Institute of Pathology, University Hospital Erlangen, Erlangen
,
S. M. Jud
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University, Erlangen-Nuremberg, Erlangen
,
C. R. Loehberg
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University, Erlangen-Nuremberg, Erlangen
,
M. P. Lux
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University, Erlangen-Nuremberg, Erlangen
,
C. Rauh
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University, Erlangen-Nuremberg, Erlangen
,
M. W. Beckmann
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University, Erlangen-Nuremberg, Erlangen
,
K. Heusinger
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University, Erlangen-Nuremberg, Erlangen
› Author Affiliations
Further Information

Publication History

Publication Date:
21 June 2013 (online)

Abstract

Aim: Nodal status remains one of the most important prognostic factors in breast cancer. The cellular and molecular reasons for the spread of tumor cells to the lymph nodes are not well understood and there are only few predictors in addition to tumor size and multifocality that give an insight into additional mechanisms of lymphatic spread. Aim of our study was therefore to investigate whether breast characteristics such as mammographic density (MD) add to the predictive value of the presence of lymph node metastases in patients with primary breast cancer.

Methods: In this retrospective study we analyzed primary, metastasis-free breast cancer patients from one breast center for whom data on MD and staging information were available. A total of 1831 patients were included into this study. MD was assessed as percentage MD (PMD) using a semiautomated method and two readers for every patient. Multiple logistic regression analyses with nodal status as outcome were used to investigate the predictive value of PMD in addition to age, tumor size, Ki-67, estrogen receptor (ER), progesterone receptor (PR), grading, histology, and multi-focality.

Results: Multifocality, tumor size, Ki-67 and grading were relevant predictors for nodal status. Adding PMD to a prediction model which included these factors did not significantly improve the prediction of nodal status (p = 0.24, likelihood ratio test).

Conclusion: Nodal status could be predicted quite well with the factors multifocality, tumor size, Ki-67 and grading.PMD does not seem to play a role in the lymphatic spread of tumor cells. It could be concluded that the amount of extracellular matrix and stromal cell content of the breast which is reflected by MD does not influence the probability of malignant breast cells spreading from the primary tumor to the lymph nodes.

Zusammenfassung

Ziel: Der Nodalstatus ist nach wie vor einer der wichtigsten Prognosefaktoren für Patientinnen mit Mammakarzinom. Die zellulären und molekularen Gründe hierfür sind nicht gut verstanden, und es gibt nur wenige Prädiktoren außer Tumorgröße und Multifokalität, die einen zusätzlichen Einblick in die Mechanismen der lymphatischen Metastasierung geben. Ziel unserer Studie war es daher zu untersuchen, ob die mammografische Dichte (MD) als Korrelat der Stroma- und Extrazellularmatrixmenge mit dem Auftreten von Lymphknotenmetastasen korreliert.

Methoden: In dieser retrospektiven Studie sind Patientinnen mit pimärem, metastasenfreien Mammakarzinom eingeschlossen wurden, die in einer Institution behandelt wurden. Von allen Patientinnen musste die MD bekannt sein, genauso wie die Staging-Informationen. Die MD wurde semiautomatisiert als prozentuale MD (PMD) von 2 unabhängigen Gutachtern beurteilt. Logistische Regressionsanalysen mit dem Nodalstatus als Zielvariable wurden durchgeführt, um den zusätzlichen prädiktiven Wert von PMD zusätzlich zu Alter, Tumorgröße, Ki-67, Östrogenrezeptorstatus (ER) und Progesteronrezeptorstatus (PR), Grading, Tumortyp und Multifokalität zu bestimmen.

Ergebnisse: Multifokalität, Tumorgröße, Ki-67 und Grading waren relevante Prädiktoren des Nodalstatus. Die Hinzunahme von PMD zu diesen Faktoren konnte die Vorhersage des Nodalstatus nicht signifikant verbessern (p = 0,24, Likelihood-Ratio-Test).

Schlussfolgerung: Der Nodalstatus konnte relativ gut durch die Parameter Multifokalität, Tumorgröße, Ki-67 und Grading vorhergesagt werden. PMD scheint keine Rolle zu spielen bei der Lymphknotenmetastasierung aus dem Primärtumor. Somit scheint die Menge an Extrazellularmatrix und Stroma, welche das Korrelat der MD ist, keinen Einfluss auf die Wahrscheinlichkeit zu haben, mit der Brustkrebszellen lymphatisch metastasieren.

 
  • References

  • 1 Fasching PA, Ekici AB, Adamietz BR et al. Breast cancer risk – genes, environment and clinics. Geburtsh Frauenheilk 2011; 71: 1056-1066
  • 2 Heusinger K, Loehberg CR, Haeberle L et al. Mammographic density as a risk factor for breast cancer in a German case-control study. Eur J Cancer Prev 2011; 20: 1-8
  • 3 Boyd NF, Guo H, Martin LJ et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med 2007; 356: 227-236
  • 4 McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2006; 15: 1159-1169
  • 5 Cuzick J, Warwick J, Pinney E et al. Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case-control study. J Natl Cancer Inst 2011; 103: 744-752
  • 6 Boyd NF, Melnichouk O, Martin LJ et al. Mammographic density, response to hormones, and breast cancer risk. J Clin Oncol 2011; 29: 2985-2992
  • 7 Gierach GL, Ichikawa L, Kerlikowske K et al. Relationship between mammographic density and breast cancer death in the Breast Cancer Surveillance Consortium. J Natl Cancer Inst 2012; 104: 1218-1227
  • 8 Chiu SY, Duffy S, Yen AM et al. Effect of baseline breast density on breast cancer incidence, stage, mortality, and screening parameters: 25-year follow-up of a Swedish mammographic screening. Cancer Epidemiol Biomarkers Prev 2010; 19: 1219-1228
  • 9 Park CC, Rembert J, Chew K et al. High mammographic breast density is independent predictor of local but not distant recurrence after lumpectomy and radiotherapy for invasive breast cancer. Int J Radiat Oncol Biol Phys 2009; 73: 75-79
  • 10 Verheus M, Maskarinec G, Erber E et al. Mammographic density and epithelial histopathologic markers. BMC Cancer 2009; 9: 182
  • 11 Conroy SM, Pagano I, Kolonel LN et al. Mammographic density and hormone receptor expression in breast cancer: the Multiethnic Cohort Study. Cancer Epidemiol 2011; 35: 448-452
  • 12 Ma H, Luo J, Press MF et al. Is there a difference in the association between percent mammographic density and subtypes of breast cancer? Luminal A and triple-negative breast cancer. Cancer Epidemiol Biomarkers Prev 2009; 18: 479-485
  • 13 Yaghjyan L, Colditz GA, Collins LC et al. Mammographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor characteristics. J Natl Cancer Inst 2011; 103: 1179-1189
  • 14 Heusinger K, Jud SM, Haberle L et al. Association of mammographic density with hormone receptors in invasive breast cancers – results from a case-only study. Int J Cancer 2012; DOI: 10.1002/ijc.27515..
  • 15 Antoni S, Sasco AJ, Dos Santos Silva I et al. Is mammographic density differentially associated with breast cancer according to receptor status? A meta-analysis. Breast Cancer Res Treat 2013; 137: 337-347
  • 16 Heusinger K, Jud SM, Haberle L et al. Association of mammographic density with the proliferation marker Ki-67 in a cohort of patients with invasive breast cancer. Breast Cancer Res Treat 2012; 135: 885-892
  • 17 DeFilippis RA, Chang H, Dumont N et al. CD36 repression activates a multicellular stromal program shared by high mammographic density and tumor tissues. Cancer Discov 2012; 2: 826-839
  • 18 Wasuthit Y, Kongdan Y, Suvikapakornkul R et al. Predictive factors of axillary lymph node metastasis in breast cancer. J Med Assoc Thai 2011; 94: 65-70
  • 19 Beckmann MW, Brucker C, Hanf V et al. Quality assured health care in certified breast centers and improvement of the prognosis of breast cancer patients. Onkologie 2011; 34: 362-367
  • 20 Fasching PA, Loehberg CR, Strissel PL et al. Single nucleotide polymorphisms of the aromatase gene (CYP19A1), HER2/neu status, and prognosis in breast cancer patients. Breast Cancer Res Treat 2008; 112: 89-98
  • 21 Fasching PA, Heusinger K, Haeberle L et al. Ki67, chemotherapy response, and prognosis in breast cancer patients receiving neoadjuvant treatment. BMC Cancer 2011; 11: 486
  • 22 Haeberle L, Wagner F, Fasching PA et al. Characterizing mammographic images using generic texture features. Breast Cancer Res 2012; 14: R59
  • 23 Rauh C, Hack CC, Haberle L et al. Percent mammographic density and dense area as risk factors for breast cancer. Geburtsh Frauenheilk 2012; 72: 727-733
  • 24 Ursin G, Astrahan MA, Salane M et al. The detection of changes in mammographic densities. Cancer Epidemiol Biomarkers Prev 1998; 7: 43-47
  • 25 Hastie T, Tibshirani R. Generalized additive models for medical research. Stat Methods Med Res 1995; 4: 187-196
  • 26 Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: application to the Cox regression model. Stat Med 1992; 11: 2093-2109
  • 27 Simon R, Altman DG. Statistical aspects of prognostic factor studies in oncology. Br J Cancer 1994; 69: 979-985
  • 28 Li T, Sun L, Miller N et al. The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev 2005; 14: 343-349
  • 29 Guo YP, Martin LJ, Hanna W et al. Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol Biomarkers Prev 2001; 10: 243-248
  • 30 Chen J, Alexander JS, Orr AW. Integrins and their extracellular matrix ligands in lymphangiogenesis and lymph node metastasis. Int J Cell Biol 2012; 2012 DOI: 10.1155/2012/853703.
  • 31 Shin JW, Min M, Larrieu-Lahargue F et al. Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell 2006; 17: 576-584
  • 32 Less JR, Posner MC, Boucher Y et al. Interstitial hypertension in human breast and colorectal tumors. Cancer Res 1992; 52: 6371-6374
  • 33 Fehm T, Maul H, Gebauer S et al. Prediction of axillary lymph node status of breast cancer patients by tumorbiological factors of the primary tumor. Strahlenther Onkol 2005; 181: 580-586
  • 34 Crabb SJ, Cheang MC, Leung S et al. Basal breast cancer molecular subtype predicts for lower incidence of axillary lymph node metastases in primary breast cancer. Clin Breast Cancer 2008; 8: 249-256
  • 35 Weigelt B, Wessels LF, Bosma AJ et al. No common denominator for breast cancer lymph node metastasis. Br J Cancer 2005; 93: 924-932
  • 36 Schulz-Wendtland R, Dilbat G, Bani M et al. Full field digital mammography (FFDM) versus CMOS technology versus tomosynthesis (DBT) – which system increases the quality of intraoperative imaging?. Geburtsh Frauenheilk 2012; 72: 532-538
  • 37 Schulz-Wendtland R, Bani M, Lux MP et al. Pilot study on the detection of simulated lesions using a 2D and 3D digital full-field mammography system with a newly developed high resolution detector based on two shifts of a-Se. Geburtsh Frauenheilk 2012; 72: 408-411
  • 38 Schulz-Wendtland R, Dilbat G, Bani MR et al. Use of tomosynthesis in intraoperative digital specimen radiography – is a reduction of breast re-excision rates possible?. Geburtsh Frauenheilk 2011; 71: 1080-1084