Synthesis 2013; 45(11): 1421-1451
DOI: 10.1055/s-0033-1338426
review
© Georg Thieme Verlag Stuttgart · New York

Allylic Oxidations in Natural Product Synthesis

Akihiko Nakamura
Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan   Fax: +81(3)52863240   Email: mnakada@waseda.jp
,
Masahisa Nakada*
Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan   Fax: +81(3)52863240   Email: mnakada@waseda.jp
› Author Affiliations
Further Information

Publication History

Received: 25 December 2012

Accepted after revision: 22 February 2013

Publication Date:
14 May 2013 (online)


Abstract

Although C–H oxidation of hydrocarbons is generally difficult, allylic C–H oxidation is relatively simple and predictable, even on a preparative scale, because active species generated at the allylic position are stabilized by the double bond. Therefore, allylic oxidation has been employed in natural product synthesis, and a variety of reagents and conditions for allylic oxidation have been reported. However, reagents and conditions suitable for natural product synthesis are limited in terms of efficiency and chemo-, regio-, and stereoselectivity, owing to the structural and characteristic diversity of natural products. This review addresses allylic oxidations, highlighting reagents and conditions that meet the requirements for natural product synthesis.

1 Introduction

2 Selenium Reagents

2.1 Selenium Dioxide

2.2 Diphenyldiselenide–Iodoxybenzene

3 Chromium(VI) Reagents

3.1 Chromic Acid and Chromate Ester

3.2 Chromium Trioxide–3,5-Dimethylpyrazole (CrO3·3,5-DMP)

3.3 PCC and PDC

4 Transition-Metal Reagents

5 Others

6 Conclusion

 
  • References

  • 1 Bulman PC, McCarthy TJ In Comprehensive Organic Synthesis. Vol. 7. Trost BM, Fleming I, Paquette LA. Pergamon Press; Oxford: 1991: 83-117
  • 2 For reviews of selenium dioxide mediated reactions before 1970, see references cited in ref. 1 and those in the following review: Rabjohn N. Org. React. 1976; 24: 261
  • 3 Barton DH. R, Crich D. Tetrahedron 1985; 41: 4359
  • 4 Riley HL, Morley JF, Friend NA. C. J. Chem. Soc. 1932; 1875
    • 5a Guillemonat A. C. R. Hebd. Seances Acad. Sci. 1935; 200: 1416
    • 5b Guillemonat A. Ann. Chim. Appl. 1939; 11: 143
    • 6a Sharpless KB, Lauer RF. J. Am. Chem. Soc. 1972; 94: 7154
    • 6b Arigoni D, Vasella A, Sharpless KB, Jensen HP. J. Am. Chem. Soc. 1973; 95: 7917
    • 6c Jensen HP, Sharpless KB. J. Org. Chem. 1975; 40: 264
    • 6d Warpehoski MA, Chabaud B, Sharpless KB. J. Org. Chem. 1982; 47: 2897

      For mechanistic studies, see:
    • 7a Stephenson LM, Speth DR. J. Org. Chem. 1979; 44: 4683
    • 7b Woggon W.-D, Ruther F, Egli M. J. Chem. Soc., Chem. Commun. 1980; 706
    • 7c Singleton DA, Hang C. J. Org. Chem. 2000; 65: 7554
    • 7d Ra CS, Park G. Tetrahedron Lett. 2003; 44: 1099
  • 8 Furber M, Mander LN. J. Am. Chem. Soc. 1987; 109: 6389
    • 9a Wender PA, Lee HY, Wilhelm RS, Williams PD. J. Am. Chem. Soc. 1989; 111: 8954
    • 9b Wender PA, Kogen H, Lee HY, Munger Jr JD, Wilhelm RS, Williams PD. J. Am. Chem. Soc. 1989; 111: 8957
    • 9c Wender PA, McDonald FE. J. Am. Chem. Soc. 1990; 112: 4956
    • 9d Wender PA, Rice KD, Schnute ME. J. Am. Chem. Soc. 1997; 119: 7897
    • 10a Takayanagi H, Kitano Y, Morinaka Y. Tetrahedron Lett. 1990; 31: 3317
    • 10b Takayanagi H, Kitano Y, Morinaka Y. J. Org. Chem. 1994; 59: 2700
  • 11 Nagaoka H, Baba A, Yamada Y. Tetrahedron Lett. 1991; 32: 6741
  • 12 Paquette LA, Wang T.-Z, Vo NH. J. Am. Chem. Soc. 1993; 115: 1676
  • 13 Salmond WG, Barta MA, Havens JL. J. Org. Chem. 1978; 43: 2057
  • 14 Corey EJ, Wu LI. J. Am. Chem. Soc. 1993; 115: 9327
  • 15 Nagaoka H, Shibuya K, Yamada Y. Tetrahedron 1994; 50: 661
  • 16 Nagamitsu T, Sunazuka T, Obata R, Tomoda H, Tanaka H, Harigaya Y, Ōmura S. J. Org. Chem. 1995; 60: 8126
  • 17 Wender PA, Jesudason CD, Nakahira H, Tamura N, Tebbe AL, Ueno Y. J. Am. Chem. Soc. 1997; 119: 12976
  • 18 Snider BB, Shi B. Tetrahedron 1999; 55: 14823
  • 19 Singh V, Samanta B, Kane VV. Tetrahedron 2000; 56: 7785
  • 20 Fürstner A, Gastner T. Org. Lett. 2000; 2: 2467
  • 21 Winkler JD, Rouse MB, Greaney MF, Harrison SJ, Jeon YT. J. Am. Chem. Soc. 2002; 124: 9726
  • 22 Trost BM, Tang W. J. Am. Chem. Soc. 2002; 124: 14542
  • 23 Nishimata T, Sato Y, Mori M. J. Org. Chem. 2004; 69: 1837
    • 24a Lee HI, Cassidy MP, Rashatasakhon P, Padwa A. Org. Lett. 2003; 5: 5067
    • 24b Padwa A, Wang Q. J. Org. Chem. 2006; 71: 7391
  • 25 Nickel A, Maruyama T, Tang H, Murphy PD, Greene B, Yusuff N, Wood JL. J. Am. Chem. Soc. 2004; 126: 16300
  • 26 Nishikawa T, Urabe D, Isobe M. Angew. Chem. Int. Ed. 2004; 43: 4782
  • 27 Muratake H, Natsume M. Angew. Chem. Int. Ed. 2004; 43: 4646
    • 28a Peese KM, Gin DY. J. Am. Chem. Soc. 2006; 128: 8734
    • 28b Peese KM, Gin DY. Chem. Eur. J. 2008; 14: 1654
  • 29 Trost BM, Tang W, Toste FD. J. Am. Chem. Soc. 2005; 127: 14785
  • 30 Satcharoen V, McLean NJ, Kemp SC, Camp NP, Brown RC. D. Org. Lett. 2007; 9: 1867
  • 31 Tatsuta K, Suzuki Y, Furuyama A, Ikegami H. Tetrahedron Lett. 2006; 47: 3595
  • 32 Zou Y, Chen C.-H, Taylor CD, Foxman BM, Snider BB. Org. Lett. 2007; 9: 1825
  • 33 Nicolaou KC, Li A, Edmonds DJ. Angew. Chem. Int. Ed. 2006; 45: 7086
  • 34 Fujioka H, Sawama Y, Kotoku N, Ohnaka T, Okitsu T, Murata N, Kubo O, Li R, Kita Y. Chem. Eur. J. 2007; 13: 10225
  • 35 Nicolaou KC, Li H, Nold AL, Pappo D, Lenzen A. J. Am. Chem. Soc. 2007; 129: 10356
  • 36 Kozak JA, Dake GR. Angew. Chem. Int. Ed. 2008; 47: 4221
  • 37 Smith III AB, Bosanac T, Basu K. J. Am. Chem. Soc. 2009; 131: 2348
  • 38 Stork G, Yamashita A, Adams J, Schulte GR, Chesworth R, Miyazaki Y, Farmer JJ. J. Am. Chem. Soc. 2009; 131: 11402
  • 39 Wang Z, Min S.-J, Danishefsky SJ. J. Am. Chem. Soc. 2009; 131: 10848
    • 40a Hirai S, Nakada M. Tetrahedron Lett. 2010; 51: 5076
    • 40b Hirai S, Nakada M. Tetrahedron 2011; 67: 518
  • 41 Nicolaou KC, Tria GS, Edmonds DJ. Angew. Chem. Int. Ed. 2008; 47: 1780
  • 42 Doveston RG, Steendam R, Jones S, Taylor RJ. K. Org. Lett. 2012; 14: 1122
    • 43a Masters JJ, Link JT, Snyder LB, Young WB, Danishefsky SJ. Angew. Chem., Int. Ed. Engl. 1995; 34: 1723
    • 43b Danishefsky SJ, Masters JJ, Young WB, Link JT, Snyder LB, Magee TV, Jung DK, Isaacs RC. A, Bornmann WG, Alaimo CA, Coburn CA, Di Grandi MJ. J. Am. Chem. Soc. 1996; 118: 2843
  • 44 Doi T, Fuse S, Shigeru M, Nakai K, Sasuga D, Takahashi T. Chem. Asian J. 2006; 1: 370
  • 45 Nakada M, Kojima E, Iwata Y. Tetrahedron Lett. 1998; 39: 313
  • 46 Hinman A, Du Bois J. J. Am. Chem. Soc. 2003; 125: 11510
  • 47 Kuramochi A, Usuda H, Yamatsugu K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2005; 127: 14200
  • 48 Whitmore FC, Pedlow Jr GW. J. Am. Chem. Soc. 1941; 63: 758
  • 49 Dauben WG, Lorber ME, Fullerton DS. J. Org. Chem. 1969; 34: 3587
  • 50 Wiberg KB, Nielsen SD. J. Org. Chem. 1964; 29: 3353
  • 51 Treibs W, Schmidt H. Ber. Dtsch. Chem. Ges. 1928; 61: 459
  • 52 Mori K, Takaishi H. Liebigs Ann. Chem. 1989; 939
  • 53 Greene AE, Edgar MT. J. Org. Chem. 1989; 54: 1468
    • 54a Boffey RJ, Santagostino M, Whittingham WG, Kilburn JD. Chem. Commun. 1998; 1875
    • 54b For the precedent examples of similar allylic oxidation systems, see: Okabe M, Abe M, Tada M. J. Org. Chem. 1982; 47: 1775
  • 55 Marcos IS, Hernández FA, Sexmero MJ, Díez D, Basabe P, Pedrero AB, García N, Urones JG. Tetrahedron 2003; 59: 685
  • 56 Jiang B, Shi H, Tian W, Zhou W. Tetrahedron 2008; 64: 469
  • 57 Srikrishna A, Dethe DH. Org. Lett. 2003; 5: 2295
  • 58 Corey EJ, Fleet GW. J. Tetrahedron Lett. 1973; 14: 4499
  • 59 McDonald E, Suksamrarn A. Tetrahedron Lett. 1975; 16: 4425
  • 60 Plata DJ, Kallmerten J. J. Am. Chem. Soc. 1988; 110: 4041
  • 61 Lee K, Cha JK. J. Am. Chem. Soc. 2001; 123: 5590
  • 62 Humphrey JM, Liao Y, Ali A, Rein T, Wong Y.-L, Chen H.-J, Courtney AK, Martin SF. J. Am. Chem. Soc. 2002; 124: 8584
  • 63 Wan X, Joullié MM. J. Am. Chem. Soc. 2008; 130: 17236
  • 64 Martín-Rodríguez M, Galán-Fernández R, Marcos-Escribano A, Bermejo FA. J. Org. Chem. 2009; 74: 1798
  • 65 Levin S, Nani RR, Reisman SE. J. Am. Chem. Soc. 2011; 133: 774
  • 66 Qian S, Zhao G. Chem. Commun. 2012; 48: 3530
  • 67 Corey EJ, Suggs JW. Tetrahedron Lett. 1975; 16: 2647
  • 68 Corey EJ, Schmidt G. Tetrahedron Lett. 1979; 20: 399
  • 69 Piancatelli G, Scettri A, D’Auria M. Synthesis 1982; 245
  • 70 Bonadies F, Fabio RD. J. Org. Chem. 1984; 49: 1647; see also ref. 50b
  • 71 Parish EJ, Chitrakorn S, Wei T.-Y. Synth. Commun. 1986; 16: 1371
  • 72 Rathore R, Saxena N, Chandrasekaran S. Synth. Commun. 1986; 16: 1493
  • 73 Parish EJ, Wei T.-Y. Synth. Commun. 1987; 17: 1227
    • 74a Nicolaou KC, Theodorakis EA, Rutjes FP. J. T, Tiebes J, Sato M, Untersteller E, Xiao X.-Y. J. Am. Chem. Soc. 1995; 117: 1171
    • 74b Nicolaou KC, Rutjes FP. J. T, Theodorakis EA, Tiebes J, Sato M, Untersteller E. J. Am. Chem. Soc. 1995; 117: 1173
    • 74c Nicolaou KC, Hwang C.-K, Duggan ME, Nugiel DA, Abe Y, Bal Reddy K, DeFrees SA, Reddy DR, Awartani RA, Conley SR, Rutjes FP. J. T, Theodorakis EA. J. Am. Chem. Soc. 1995; 117: 10227
    • 74d Nicolaou KC, Theodorakis EA, Rutjes FP. J. T, Sato M, Tiebes J, Xiao X.-Y, Hwang C.-K, Duggan ME, Yang Z, Couladouros EA, Sato F, Shin J, He H.-M, Bleckman T. J. Am. Chem. Soc. 1995; 117: 10239
    • 74e Nicolaou KC, Rutjes FP. J. T, Theodorakis EA, Tiebes J, Sato M, Untersteller E. J. Am. Chem. Soc. 1995; 117: 10252
    • 74f Nicolaou KC. Angew. Chem., Int. Ed. Engl. 1996; 35: 589; Angew. Chem. 1996, 108, 645
  • 75 Matsuo G, Kawamura K, Hori N, Matsukura H, Nakata T. J. Am. Chem. Soc. 2004; 126: 14374
  • 76 Kadota I, Takamura H, Nishii H, Yamamoto Y. J. Am. Chem. Soc. 2005; 127: 9246
    • 77a Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K, Sorensen EJ. Nature 1994; 367: 630
    • 77b Nicolaou KC, Nantermet PG, Ueno H, Guy RK, Couladouros EA, Sorensen EJ. J. Am. Chem. Soc. 1995; 117: 624
    • 77c Nicolaou KC, Liu J.-J, Yang Z, Ueno H, Sorensen EJ, Claiborne CF, Guy RK, Hwang C.-K, Nakada M, Nantermet PG. J. Am. Chem. Soc. 1995; 117: 634
    • 77d Nicolaou KC, Yang Z, Liu J.-J, Nantermet PG, Claiborne CF, Renaud J, Guy RK, Shibayama K. J. Am. Chem. Soc. 1995; 117: 645
    • 77e Nicolaou KC, Ueno H, Liu J.-J, Nantermet PG, Yang Z, Renaud J, Paulvannan K, Chadha R. J. Am. Chem. Soc. 1995; 117: 653

    • For reviews, see:
    • 77f Nicolaou KC, Guy RK. Angew. Chem., Int. Ed. Engl. 1995; 34: 2079
    • 77g Nicolaou KC, Hale CR. H, Nilewski C. Chem. Rec. 2012; 12: 407
  • 78 Nicolaou KC, Hwang C.-K, Sorensen EJ, Clairborne CF. J. Chem. Soc., Chem. Commun. 1992; 1117
  • 79 Mukaiyama T, Shiina I, Iwadare H, Saitoh M, Nishimura T, Ohkawa N, Sakoh H, Nishimura K, Tani Y, Hasegawa M, Yamada K, Saitoh K. Chem. Eur. J. 1999; 5: 121
  • 80 Albert BJ, Sivaramakrishnan A, Naka T, Czaicki NL, Koide K. J. Am. Chem. Soc. 2007; 129: 2648
  • 81 Shing TK. M, Jiang Q. J. Org. Chem. 2000; 65: 7059
    • 82a Yu J.-Q, Corey EJ. Org. Lett. 2002; 4: 2727
    • 82b Yu J.-Q, Corey EJ. J. Am. Chem. Soc. 2003; 125: 3232
    • 82c Yu J.-Q, Wu H.-C, Corey EJ. Org. Lett. 2005; 7: 1415

    • For palladium-catalyzed sp3 C–H activation, see:
    • 82d Li H, Li B.-J, Shi Z.-J. Catal. Sci. Technol. 2011; 1: 191

    • For palladium-catalyzed allylic oxidation, see:
    • 82e Moiseev II, Vargaftik MN. Coord. Chem. Rev. 2004; 248: 2381
  • 83 Zaed AM, Swift MD, Sutherland A. Org. Biomol. Chem. 2009; 7: 2678
  • 84 Lee H.-Y, Sha C.-K. J. Org. Chem. 2012; 77: 598
  • 85 Jeker OF, Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 3474
  • 86 Uwamori M, Saito A, Nakada M. J. Org. Chem. 2012; 77: 5098
  • 87 Zhong Y.-L, Gauthier DR, Shi Y.-J, McLaughlin M, Chung JY. L, Dagneau P, Marcune B, Krska SW, Ball RG, Reamer RA, Yasuda N. J. Org. Chem. 2012; 77: 3297
    • 88a Stang EM, White MC. Nature Chem. 2009; 1: 547

    • For palladium(II)/bis-sulfoxide catalyzed allylic oxidation systems, see:
    • 88b Chen MS, White MC. J. Am. Chem. Soc. 2004; 126: 1346
    • 88c Chen MS, Prabagaran N, Labenz NA, White MC. J. Am. Chem. Soc. 2005; 127: 6970
    • 88d Fraunhoffer KJ, Prabagaran N, Sirois LE, White MC. J. Am. Chem. Soc. 2006; 128: 9032
    • 88e Delcamp JH, White MC. J. Am. Chem. Soc. 2006; 128: 15076
    • 88f Covell DJ, White MC. Angew. Chem. Int. Ed. 2008; 47: 6448
    • 88g Gormisky PE, White MC. J. Am. Chem. Soc. 2011; 133: 12584
    • 89a Shing TK. M, Yeung Y.-Y. Angew. Chem. Int. Ed. 2005; 44: 7981
    • 89b Shing TK. M, Yeung Y.-Y. Chem. Eur. J. 2006; 12: 8367
  • 90 Shing TK. M, Yeung Y.-Y, Su PL. Org. Lett. 2006; 8: 3149
    • 91a Nicolaou KC, Toh Q.-Y, Chen DY.-K. J. Am. Chem. Soc. 2008; 130: 11292
    • 91b Leung GY. C, Li H, Toh Q.-Y, Ng AM.-Y, Sum RJ, Bandow JE, Chen DY.-K. Eur. J. Org. Chem. 2011; 183
  • 92 Trzoss L, Xu J, Lacoske MH, Mobley WC, Theodorakis EA. Org. Lett. 2011; 13: 4554
  • 93 Schultz AG, Wang A. J. Am. Chem. Soc. 1998; 120: 8259
  • 94 Salvador JA. R, Sá e Melo ML, Campos Neves AS. Tetrahedron Lett. 1997; 38: 119
  • 95 Ho T.-L, Su C.-Y. J. Org. Chem. 2000; 65: 3566
  • 96 Zhang X, Jiang W, Sui Z. J. Org. Chem. 2003; 68: 4523
  • 97 Patin A, Kanazawa A, Philouze C, Greene AE, Muri E, Barreiro E, Costa PC. C. J. Org. Chem. 2003; 68: 3831
  • 98 Ishii Y, Nakayama K, Takeno M, Sakaguchi S, Iwahama T, Nishiyama Y. J. Org. Chem. 1995; 60: 3934
  • 99 Toyota M, Asano T, Ihara M. Org. Lett. 2005; 7: 3929
    • 100a Catino AJ, Forslund RE, Doyle MP. J. Am. Chem. Soc. 2004; 126: 13622
    • 100b Catino AJ, Nichols JM, Choi H, Gottipamula S, Doyle MP. Org. Lett. 2005; 7: 5167
    • 100c Choi H, Doyle MP. Org. Lett. 2007; 9: 5349
    • 100d McLaughlin EC, Choi H, Wang K, Chiou G, Doyle MP. J. Org. Chem. 2009; 74: 730
  • 101 Soorukram D, Qu T, Barrett AG. M. Org. Lett. 2008; 10: 3833
    • 102a Jung ME, Johnson TW. Org. Lett. 1999; 1: 1671
    • 102b Jung ME, Johnson TW. Tetrahedron 2001; 57: 1449
  • 103 Miller RA, Li W, Humphrey GR. Tetrahedron Lett. 1996; 37: 3429
  • 104 Homma M, Nakada M. Tetrahedron Lett. 2007; 48: 1541
  • 105 Ochiai M, Ito T, Takahashi H, Nakanishi A, Toyonari M, Sueda T, Goto S, Shiro M. J. Am. Chem. Soc. 1996; 118: 7716
  • 106 Sparling BA, Moebius DC, Shair MD. J. Am. Chem. Soc. 2013; 135: 644
    • 107a Zhao Y, Yeung Y.-Y. Org. Lett. 2010; 12: 2128
    • 107b Zhao Y, Yim W.-L, Tan CK, Yeung Y.-Y. Org. Lett. 2011; 13: 4308
  • 108 Yamaoka M, Nakazaki A, Kobayashi S. Tetrahedron Lett. 2009; 50: 6764
  • 109 Silvestre SM, Salvador JA. R. Tetrahedron 2007; 63: 2439
  • 110 Nakamura A, Kaji Y, Saida K, Ito M, Nagatoshi Y, Hara N, Fujimoto Y. Tetrahedron Lett. 2005; 46: 6373
    • 111a Foricher J, Fürbringer C, Pfoertner K. US Patent 5030739, 1991
    • 111b Jones SR, Selinsky BS. J. Org. Chem. 1998; 63: 3786
  • 112 Blay G, Cardona L, Garcfa B, Pedro JR. J. Org. Chem. 1993; 58: 7204
  • 113 Khachik F, Chang A.-N. J. Org. Chem. 2009; 74: 3875
  • 114 Marwah P, Marwah A, Lardy HA. Green Chem. 2004; 6: 570
  • 115 Li C, Dian L, Zhang W, Lei X. J. Am. Chem. Soc. 2012; 134: 12414
    • 116a Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
    • 116b Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851
    • 117a Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 117b Gunay A, Theopold KH. Chem. Rev. 2010; 110: 1060
    • 117c McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 117d Lu H, Zhang XP. Chem. Soc. Rev. 2011; 40: 1899
    • 117e Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
    • 117f Costas M. Coord. Chem. Rev. 2011; 255: 2912
    • 117g Newhouse T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
  • 118 A pioneering work of utilizing the enantioselective copper(I)-catalyzed allylic benzoate formation to prepare the chiral intermediate in the total synthesis of leukotriene B4, see: Andrus MB, Chen X. Tetrahedron 1997; 53: 16229
    • 119a Eames J, Watkinson M. Angew. Chem. Int. Ed. 2001; 40: 3567
    • 119b Andrus MB, Lashley JC. Tetrahedron 2002; 58: 845
    • 119c Punniyamurthy T, Rout L. Coord. Chem. Rev. 2008; 252: 134
    • 119d Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
  • 120 Lewis JC, Coelho PS, Arnold FH. Chem. Soc. Rev. 2011; 40: 2003