Synlett, Table of Contents Synlett 2013; 24(16): 2045-2048DOI: 10.1055/s-0033-1339676 letter © Georg Thieme Verlag Stuttgart · New YorkThe Role of Ni-Carboxylate During Catalytic Asymmetric Iodolactonization Using PyBidine-Ni(OAc)2 Authors Author Affiliations Takayoshi Arai* Department of Chemistry, Graduate School of Science, Chiba University, Inage 263-8522, Japan Fax: +81(43)2902889 Email: tarai@faculty.chiba-u.jp Satoshi Kajikawa Department of Chemistry, Graduate School of Science, Chiba University, Inage 263-8522, Japan Fax: +81(43)2902889 Email: tarai@faculty.chiba-u.jp Eri Matsumura Department of Chemistry, Graduate School of Science, Chiba University, Inage 263-8522, Japan Fax: +81(43)2902889 Email: tarai@faculty.chiba-u.jp Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Abstract The combination of a PyBidine-Ni(OAc)2 complex with a catalytic amount of iodine efficiently catalyzed asymmetric iodolactonization to generate chiral iodolactones with up to 89% enantiomeric excess. The formation of an intermediate Ni-carboxylate species from the alkenyl carboxylic acid is a key role in promoting the iodolactonization. Key words Key wordsasymmetric catalysis - iodolactone - nickel - carboxylate - ligands Full Text References References and Notes 1a Dowle MD, Davies DI. Chem. Soc. Rev. 1979; 8: 171 1b Ranganathan S, Muraleedharan KM, Vaish NK, Jayaraman N. Tetrahedron 2004; 60: 5273 1c Lava MS, Banerjee AK, Cabrera EV. Curr. Org. Chem. 2009; 13: 720 1d Rodriguez F, Fananas FJ In Handbook of Cyclization Reactions . Vol. 4. Ma S. Wiley-VCH; Weinheim: 2010: 951 1e Gribble GW. Chem. Soc. Rev. 1999; 28: 335 For reviews of enantioselective halocyclizations, see: 2a Chen G, Ma S. Angew. Chem. Int. Ed. 2010; 49: 8306 2b Tan CK, Zhou L, Yeung Y. Synlett 2011; 1335 2c Snyder SA, Treitler DS, Brucks AP. Aldrichimica Acta 2011; 44: 27 2d Denmark SE, Kuester WE, Burk MT. Angew. Chem. Int. Ed. 2012; 51: 10938 3 Kitagawa O, Hanano T, Tanabe K, Shiro M, Taguchi T. J. Chem. Soc., Chem. Commun. 1992; 1005 For selected examples of reagent-controlled halolactonization, see: 4a Grossman RB, Trupp RJ. Can. J. Chem. 1998; 76: 1233 4b Garnier JM, Robin S, Rousseau G. Eur. J. Org. Chem. 2007; 3281 5 Veitch GE, Jacobsen EN. Angew. Chem. Int. Ed. 2010; 49: 7332 6 Dobish MC, Johnston JN. J. Am. Chem. Soc. 2012; 134: 6068 For other catalytic asymmetric iodolactonizations, see: 7a Wang M, Gao LX, Yue W, Mai WP. Synth. Commun. 2004; 34: 1023 7b Uyanik M, Yasui T, Ishihara K. Bioorg. Med. Chem. Lett. 2009; 19: 3848 7c Tungen JE, Nolsøe Hansen TV. Org. Lett. 2012; 14: 5884 8a Whitehead DC, Yousefi R, Jaganathan A, Borhan B. J. Am. Chem. Soc. 2010; 132: 3298 8b Yousefi R, Whitehead DC, Mueller JM, Staples RJ, Borhan B. Org. Lett. 2011; 13: 608 8c Zhang W, Liu N, Schienebeck CM, Decloux K, Zheng S, Werness JB, Tang W. Chem. Eur. J. 2012; 18: 7296 9a Zhang W, Zheng S, Liu N, Werness JB, Guzei IA, Tang W. J. Am. Chem. Soc. 2010; 132: 3664 9b Murai K, Matsushita T, Nakamura A, Fukushima S, Shimura M, Fujioka H. Angew. Chem. Int. Ed. 2010; 49: 9174 9c Zhou L, Tan CK, Jiang X, Chen F, Yeung Y.-Y. J. Am. Chem. Soc. 2010; 132: 15474 9d Tan CK, Zhou L, Yeung Y.-Y. Org. Lett. 2011; 13: 2738 9e Tan CT, Le C, Yeung Y. Chem. Commun. 2012; 48: 5793 9f Paull DH, Fang C, Donald JR, Pansick AD, Martin SP. J. Am. Chem. Soc. 2012; 134: 11128 9g Jiang X, Tan CK, Zhou L, Yueng Y. Angew. Chem. Int. Ed. 2012; 51: 7771 9h Murai K, Nakamura A, Matsushita T, Shimura M, Fujioka H. Chem. Eur. J. 2012; 18: 8448 ; see also ref. 8c 10 Ning Z, Jin R, Ding J, Gao L. Synlett 2009; 2291 11a Arai T, Mishiro A, Yokoyama N, Suzuki K, Sato H. J. Am. Chem. Soc. 2010; 132: 5338 11b Arai T, Mishiro A, Matsumura E, Awata A, Shirasugi M. Chem. Eur. J. 2012; 18: 11219 11c Arai T, Ogino Y. Molecules 2012; 17: 6170 12 Bhor S, Anilkumar G, Tse MK, Klawonn M, Döbler C, Bitterlich B, Grotevendt A, Beller M. Org. Lett. 2005; 7: 3373 13 Recently, in the catalytic asymmetric bromolactonization using BINAP-Pd complex, the generation of a palladium-carboxylate was proposed, although the basis of metal-carboxylate formation is unclear. See: Lee HJ, Kim DY. Tetrahedron Lett. 2012; 53: 6984 14 Analytical data for 2a: Rf = 0.40 (hexane–EtOAc, 2:1). 1H NMR (500 MHz, CDCl3): δ = 7.41–7.33 (m, 5 H), 3.58 (dd, J = 12.3, 11.2 Hz, 2 H), 2.57–2.33 (m, 4 H), 1.84–1.80 (m, 1 H), 1.60–1.56 (m, 1 H); 13C NMR (125 MHz, CDCl3): δ = 170.5, 140.3, 129.1, 128.5, 125.3, 84.5, 32.1, 29.1, 17.8, 16.6; HRMS: m/z [M + H]+ calcd for C12H14O2I: 317.0033; found: 317.0031; 78% ee; [α]D 24 +27.5 (c = 1.2, CHCl3); enantiomeric excess was determined by HPLC analysis with a Chiralpak AD-H column (hexane–i-PrOH, 95:5; 1.0 mL/min; 250 nm): R t = 14.2 (major enantiomer), 15.8 (minor enantiomer) min. 15 Enantioselective Iodolactonization Catalyzed by PyBidine-Ni(OAc)2 Complex; General Procedure: A mixture of PyBidine (7.3 mg, 0.0105 mmol) and Ni(OAc)2·4H2O (2.5 mg 0.01 mmol) was stirred at r.t. for 3 h in anhydrous CH2Cl2 (1.0 mL). After cooling the mixture to –78 °C, a carboxylic acid (0.1 mmol) in toluene (3.0 mL) was slowly added and the mixture was stirred for 0.5 h at the same temperature. I2 (5.0 mg, 0.02 mmol) and NIS (24.6 mg, 0.11 mmol) were added and the mixture was stirred for 22–48 h. The reaction was quenched by the addition of saturated aq Na2SO3 and 1 M aq NaOH, and extracted with CH2Cl2 (3×). The collected organic layer was dried over Na2SO4. After removal of the solvent under reduced pressure, the residue was purified by silica-gel column chromatography (hexane–EtOAc, 6:1) to afford the iodolactone. The enantiomeric excess of the product was determined by HPLC analysis. Supplementary Material Supplementary Material Supporting Information (PDF)