Int J Sports Med 2014; 35(01): 55-61
DOI: 10.1055/s-0033-1345140
Training & Testing
© Georg Thieme Verlag KG Stuttgart · New York

Influence of Hard vs. Soft Ground Surfaces on Bone Accretion in Prepubertal Footballers

M. Plaza- Carmona
1   IGOID Toledo Research Group, University of Castilla-La Mancha, Toledo, Spain
,
G. Vicente-Rodriguez
2   Physiotherapy and Nursing, University of Zaragoza, Huesca, Spain
,
M. Martín-García
3   GENUD Toledo Research Group, University of Castilla-La Mancha, Toledo, Spain
,
P. Burillo
4   Sports Science Institute, University Camilo Jose Cela, Madrid, Spain
,
J. L. Felipe
5   Faculty of Sport Sciences, European University of Madrid, Spain
,
E. Mata
3   GENUD Toledo Research Group, University of Castilla-La Mancha, Toledo, Spain
,
J. A. Casajús
6   Department of Nursery and Physiatry, Zaragoza University, Zaragoza, Spain
,
L. Gallardo
1   IGOID Toledo Research Group, University of Castilla-La Mancha, Toledo, Spain
,
I. Ara
7   Physical Activity and Sport Sciences, University of Castilla-La Mancha, Toledo, Spain
› Author Affiliations
Further Information

Publication History



accepted after revision 05 April 2013

Publication Date:
18 June 2013 (online)

Abstract

Information regarding osteogenic effects of physical activity performed on different playing surfaces is scarce. A total of 42 children (9.2±0.2 years, Tanner stages I–II) participated in this study. 14 were playing on artificial turf soft ground (SG), 14 on a natural non-grass hard ground (HG) and 14 were assigned to the sedentary control group (C). Whole body and hip scans (dual energy X-ray absorptiometry), anthropometric variables (weight and height) and physical fitness (VO2max) were determined in all participants. Bone mineral content (BMC) values were higher in the SG group compared to the C group at the legs (209.75±5.11 g vs. 187.42±5.14 g, respectively), pelvis (122.72±4.27 g vs. 98.58±4.29 g respectively) and whole-body level (1 126.1±22.81 g vs. 1 035.34±22.92 g, respectively). The hard ground (HG) group also showed higher values in the majority of BMC variables compared to the C group. Additionally, bone mineral density (BMD) was significantly higher at all sites of the hip in both active groups compared to control (P<0.05). No differences between HG and SG were found. In summary, similar bone mass accretion is obtained by prepubescent footballers independently of the surface on which they practice football.

 
  • References

  • 1 Alcántara E, Gámez J, Rosa Sanchís M. Analysis of the influence of rubber infill morphology on the mechanical performance of artificial turf surfaces for soccer. Proceedings of the Institution of Mechanical Engineers, Part P: J Sports Engin Technol 2009; 223: 1-9
  • 2 Alfredson H, Nordstrom P, Lorentzon R. Total and regional bone mass in female soccer players. Calcif Tissue Int 1996; 59: 438-442
  • 3 Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A. Exercise before puberty may confer residual benefits in bone density in adulthood: Studies in active prepubertal and retired female gymnasts. J Bone Miner Res 1998; 13: 500-507
  • 4 Bowers KD, Martin RB. Cleat-surface friction on new and old AstroTurf. Med Sci Sports 1975; 7: 132-135
  • 5 Bravo G, Gauthier P, Roy PM, Payette H, Gaulin P, Harvey M. Impact of a 12-month exercise program on the physical and psychological health of osteopenic women. J Am Geriatr Soc 1996; 44: 756-762
  • 6 Burillo P, Felipe JL, Gallardo A, Gallardo L, Sanchis M, Pérez V. El césped artificial. La revolución del pavimento en el fútbol: Instituto de Biomecánica de Valencia; 2010
  • 7 Calbet JAL, Dorado C, Díaz-Herrera P, Rodríguez-Rodríguez LP. High femoral bone mineral content and density in male football (soccer) players. Med Sci Sports Excerc 2001; 33: 1682-1687
  • 8 Duke PM, Litt IF, Gross RT. Adolescents’ self assessment of sexual maturation. Pediatrics 1980; 66: 918-920
  • 9 Duppe H, Gardsell P, Johnell O, Ornstein E. Bone mineral density in female junior, senior and former football players. Osteoporos Int 1996; 6: 437-441
  • 10 Farhat N, Mata V, Rosa D, Fayos J, Peirau X. Musculo-skeletic model for knee joint forces estimation in sport activities. In, 7th EUROMECH Solid Mechanics Conference ESMC2009 Lisboa: Instituto Superior Técnico; 2009
  • 11 Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA. Bone densitometry in Canadian children 8–17 Years of Age. Calcif Tissue Int 1996; 59: 344-351
  • 12 FIFA . FIFA Quality Concept for Football Turf. Handbook of Requirements. Zurich: Fédération Internationale de Football Association; 2012
  • 13 Freychat P, Belli A, Carret JP, Lacour JR. Relationship between rearfoot and forefoot orientation and ground reaction forces during running. Med Sci Sports Exerc 1996; 28: 225-232
  • 14 Fuchs RK, Snow CM. Gains in hip bone mass from high-impact training are maintained: A randomized controlled trial in children. J Pediatr 2002; 141: 357-362
  • 15 Gracia-Marco L, Rey-López JP, Santaliestra-Pasías AM, Jiménez-Pavón D, Díaz LE, Moreno LA, Vicente-Rodríguez G. Sedentary behaviours and its association with bone mass in adolescents: the HELENA cross-sectional study. BMC Public Health 2012; 971
  • 16 Grove K, Londeree B. Bone density in postmenopausal women: high impact vs low impact exercise. Med Sci Sports Exerc 1992; 24: 1190-1194
  • 17 Harriss DJ, Atkinson G. Ethical standards in sport and exercise science research. Int J Sports Med 2011; 32: 819-821
  • 18 Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: A review of controlled trials. Bone 2007; 40: 14-27
  • 19 Karlsson MK, Nordqvist A, Karlsson C. Physical activity increases bone mass during growth. Food Nutr Res 2008; 2-10
  • 20 Leger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 m shuttle run test for aerobic fitness. Scand J Med Sci Sports 1988; 6: 93-101
  • 21 Lehtonen-Veromaa M, Mottonen T, Svedstrom E, Hakola P, Heinonen OJ, Viikari J. Physical activity and bone mineral acquisition in peripubertal girls. Scand J Med Sci Sports 2000; 10: 236-243
  • 22 Lima F, De Falco V, Baima J, Carazzato JG, Pereira RM. Effect of impact load and active load on bone metabolism and body composition of adolescent athletes. Med Sci Sports Exerc 2001; 33: 1318-1323
  • 23 MacKelvie KJ, Khan KM, McKay HA. Is there a critical period for bone response to weight-bearing exercise in children and adolescents? a systematic review. Br J Sports Med 2002; 36: 250-257
  • 24 Martyn-St James M, Carroll S. A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med 2008; 43: 898-908
  • 25 Naunheim R, Parrott H, Standeven J. A Comparison of Artificial Turf. J Trauma Inj Infect Crit Care 2004; 57: 1311-1314
  • 26 Rizzoli R, Bianchi ML, Garabédian M et al. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 2010; 46: 294-305
  • 27 Rizzoli R, Bonjour JP. Determinants of Peak Bone Mass and Mechanisms of Bone Loss. Osteoporos Int 1999; 2: 17-23
  • 28 Rosa D. Aspectos biomecánicos de los pavimentos deportivos. Hierba artificial. In, III Curso de Experto Universitario en Gestión del Césped Deportivo Natural y Artificial. Las Rozas: Fundación RFEF y UCLM; 2009
  • 29 Rosa D, Sanchís M, Alcántara E et al. Avances en el estudio de campos de hierba artificial, aportaciones biomecánicas. In: Pérez P, Llana S. eds Biomecánica aplicada a la actividad física y al deporte. Valencia: Ayuntamiento de Valencia; 2007: 405-429
  • 30 Ross MH, Pawlina W. Histology: A text and atlas with correlated cell and molecular biology. 6ed. Lippincott Williams & Wilkins; 2010
  • 31 Rutherford O. Is there a role for exercise in the prevention of osteoporotic fractures?. Br J Sport Med 1999; 33: 378-386
  • 32 Slemenda CW, Miller JZ, Hui SL, Reister TK, Johnston CC. Role of physical activity in the development of skeletal mass in children. J Bone Miner Res 1991; 6: 1227-1233
  • 33 Vicente-Rodriguez G, Ara I, Dorado C, Pérez J, Calbet J. Actividad Física y masa ósea en niños y niñas prepúberes. Arch Med Deporte 2003; 20: 52-58
  • 34 Vicente-Rodriguez G. How does exercise affect bone development during growth?. Int J Sports Med 2006; 36: 561-569
  • 35 Vicente-Rodriguez G, Ara I, Pérez-Gómez J, Serrano-Sánchez JA, Dorado C, Calbet JAL. High femoral bone mineral density accretion in prepubertal soccer players. Med Sci Sports Exec 2004; 1789-1795
  • 36 Vicente-Rodriguez G, Dorado C, Perez-Gomez J, Gonzalez-Henriquez JJ, Calbet JAL. Enhanced bone mass and physical fitness in young female handball players. Bone 2004; 35: 1208-1215
  • 37 Vicente-Rodríguez G, Ezquerra J, Mesana MI, Fernández-Alvira JM, Rey-López JP, Casajus JA. Independent and combined effect of nutrition and exercise on bone mass development. J Bone Miner Res 2008; 26: 416-424
  • 38 Vicente-Rodriguez G, Jimenez-Ramirez J, Ara I, Serrano-Sanchez JA, Dorado C, Calbet JAL. Enhanced bone mass and physical fitness in prepubescent footballers. Bone 2003; 33: 853-859
  • 39 Vicente-Rodríguez G, Ortega FB, Rey-López JP, España-Romero V, Blay VA, Blay G. Extracurricular physical activity participation modifies the association between high TV watching and low bone mass. Bone 2009; 45: 925-930
  • 40 Vicente-Rodríguez G, Urzanqui A, Mesana MI, Ortega FB, Ruiz JR, Ezquerra J. Physical fitness effect on bone mass is mediated by the independent association between lean mass and bone mass through adolescence: a cross-sectional study. J Bone Miner Res 2008; 26: 288-229