Semin Liver Dis 2013; 33(02): 147-156
DOI: 10.1055/s-0033-1345721
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Molecular Mechanisms of HBV-Associated Hepatocarcinogenesis

Francesca Guerrieri
1   Department of Internal Medicine (DMISM) and Sapienza Life Nanoscience Laboratory (SLN-Lab), Sapienza University, Rome, Italy
2   LEA INSERM U785 - DMISM, Sapienza University, Rome, Italy
,
Laura Belloni
1   Department of Internal Medicine (DMISM) and Sapienza Life Nanoscience Laboratory (SLN-Lab), Sapienza University, Rome, Italy
3   IIT Centre for Life Nanoscience (CLNS), Rome, Italy
,
Natalia Pediconi
3   IIT Centre for Life Nanoscience (CLNS), Rome, Italy
4   Department of Molecular Medicine, Sapienza University, Rome, Italy
,
Massimo Levrero
1   Department of Internal Medicine (DMISM) and Sapienza Life Nanoscience Laboratory (SLN-Lab), Sapienza University, Rome, Italy
2   LEA INSERM U785 - DMISM, Sapienza University, Rome, Italy
3   IIT Centre for Life Nanoscience (CLNS), Rome, Italy
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
08. Juni 2013 (online)

Abstract

Hepatitis B virus (HBV) contributes to hepatocellular carcinoma (HCC) development through direct and indirect mechanisms. HBV-DNA integration into the host genome occurs at early steps of clonal tumor expansion and induces both genomic instability and direct insertional mutagenesis of diverse cancer-related genes. Prolonged expression of the viral regulatory protein HBx and the large envelope protein deregulate the cellular transcription program and proliferation control and sensitize liver cells to carcinogenic factors. Epigenetic changes targeting the expression of tumor suppressor genes occur early in the development of HCC. A major role is played by HBx that is recruited on cellular chromatin and modulates chromatin dynamics at specific gene loci. Compared with tumors associated with other risk factors, HBV-related tumors have a higher rate of chromosomal alterations and p53 inactivation by mutations, overexpress fetal liver/hepatic progenitor cells genes, and show a specific activation of the AKT pathway. The wnt/β-catenin pathway is also often activated, but HBV-related tumors display a low rate of activating β-catenin mutations. All available evidence strongly supports the notion that chronic HBV infection triggers both common and etiology-specific oncogenic pathways, thus playing a direct role beyond stimulation of host immune responses and chronic necroinflammatory liver disease.

 
  • References

  • 1 Venook AP, Papandreou C, Furuse J, de Guevara LL. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist 2010; 15 (Suppl. 04) 5-13
  • 2 El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132 (7) 2557-2576
  • 3 Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 2004; 127 (5) (Suppl. 01) S35-S50
  • 4 Sherman M. Risk of hepatocellular carcinoma in hepatitis B and prevention through treatment. Cleve Clin J Med 2009; 76 (Suppl. 03) S6-S9
  • 5 Raimondo G, Allain JP, Brunetto MR , et al. Statements from the Taormina expert meeting on occult hepatitis B virus infection. J Hepatol 2008; 49 (4) 652-657
  • 6 Ahn SH, Park YN, Park JY , et al. Long-term clinical and histological outcomes in patients with spontaneous hepatitis B surface antigen seroclearance. J Hepatol 2005; 42 (2) 188-194
  • 7 Pollicino T, Squadrito G, Cerenzia G , et al. Hepatitis B virus maintains its pro-oncogenic properties in the case of occult HBV infection. Gastroenterology 2004; 126 (1) 102-110
  • 8 Pollicino T, Vegetti A, Saitta C , et al. Hepatitis B virus DNA integration in tumour tissue of a non-cirrhotic HFE-haemochromatosis patient with hepatocellular carcinoma. J Hepatol 2013; 58 (1) 190-193
  • 9 Chen CJ, Yang HI, Su J , et al; REVEAL-HBV Study Group. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 2006; 295 (1) 65-73
  • 10 Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol 2009; 51 (3) 581-592
  • 11 Pollicino T, Belloni L, Raffa G , et al. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology 2006; 130 (3) 823-837
  • 12 Bouchard MJ, Navas-Martin S. Hepatitis B and C virus hepatocarcinogenesis: lessons learned and future challenges. Cancer Lett 2011; 305 (2) 123-143
  • 13 European Association For The Study Of The Liver. EASL Clinical Practice Guidelines: management of chronic hepatitis B. J Hepatol 2009; 50 (2) 227-242
  • 14 Papatheodoridis GV, Lampertico P, Manolakopoulos S, Lok A. Incidence of hepatocellular carcinoma in chronic hepatitis B patients receiving nucleos(t)ide therapy: a systematic review. J Hepatol 2010; 53 (2) 348-356
  • 15 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144 (5) 646-674
  • 16 Levrero M. Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene 2006; 25 (27) 3834-3847
  • 17 Wu J, Meng Z, Jiang M , et al. Hepatitis B virus suppresses toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology 2009; 49 (4) 1132-1140
  • 18 Aoki H, Kajino K, Arakawa Y, Hino O. Molecular cloning of a rat chromosome putative recombinogenic sequence homologous to the hepatitis B virus encapsidation signal. Proc Natl Acad Sci U S A 1996; 93 (14) 7300-7304
  • 19 Gozuacik D, Murakami Y, Saigo K , et al. Identification of human cancer-related genes by naturally occurring hepatitis B virus DNA tagging. Oncogene 2001; 20 (43) 6233-6240
  • 20 Murakami Y, Saigo K, Takashima H , et al. Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut 2005; 54 (8) 1162-1168
  • 21 Ferber MJ, Montoya DP, Yu C , et al. Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancers. Oncogene 2003; 22 (24) 3813-3820
  • 22 Paterlini-Bréchot P, Saigo K, Murakami Y , et al. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene 2003; 22 (25) 3911-3916
  • 23 Sung WK, Zheng H, Li S , et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 2012; 44 (7) 765-769
  • 24 Fujimoto A, Totoki Y, Abe T , et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet 2012; 44 (7) 760-764
  • 25 Terradillos O, Billet O, Renard CA , et al. The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesis in transgenic mice. Oncogene 1997; 14 (4) 395-404
  • 26 Chisari FV, Klopchin K, Moriyama T , et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 1989; 59 (6) 1145-1156
  • 27 Hsieh YH, Su IJ, Wang HC , et al. Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis 2004; 25 (10) 2023-2032
  • 28 Hildt E, Munz B, Saher G, Reifenberg K, Hofschneider PH. The PreS2 activator MHBs(t) of hepatitis B virus activates c-raf-1/Erk2 signaling in transgenic mice. EMBO J 2002; 21 (4) 525-535
  • 29 Levrero M, Belloni L. HBV Signaling. In: Clavien PA, Dufour JF, , eds. Signaling Pathways in Liver Diseases. Berlin-Heidelberg: Springer; 2010: 465-481
  • 30 Belloni L, Pollicino T, De Nicola F , et al. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc Natl Acad Sci U S A 2009; 106 (47) 19975-19979
  • 31 Lucifora J, Arzberger S, Durantel D , et al. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J Hepatol 2011; 55 (5) 996-1003
  • 32 Pang R, Lee TK, Poon RT , et al. Pin1 interacts with a specific serineproline motif of hepatitis B virus X-protein to enhance hepatocarcinogenesis. Gastroenterology 2007; 132 (3) 1088-1103
  • 33 Wang WH, Studach LL, Andrisani OM. Proteins ZNF198 and SUZ12 are down-regulated in hepatitis B virus (HBV) X protein-mediated hepatocyte transformation and in HBV replication. Hepatology 2011; 53 (4) 1137-1147
  • 34 Studach LL, Menne S, Cairo S , et al. Subset of Suz12/PRC2 target genes is activated during hepatitis B virus replication and liver carcinogenesis associated with HBV X protein. Hepatology 2012; 56 (4) 1240-1251
  • 35 Park IY, Sohn BH, Yu E , et al. Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology 2007; 132 (4) 1476-1494
  • 36 Zheng DL, Zhang L, Cheng N , et al. Epigenetic modification induced by hepatitis B virus X protein via interaction with de novo DNA methyltransferase DNMT3A. J Hepatol 2009; 50 (2) 377-387
  • 37 Cougot D, Wu Y, Cairo S , et al. The hepatitis B virus X protein functionally interacts with CREB-binding protein/p300 in the regulation of CREB-mediated transcription. J Biol Chem 2007; 282 (7) 4277-4287
  • 38 Cougot D, Allemand E, Rivière L , et al. Inhibition of PP1 phosphatase activity by HBx: a mechanism for the activation of hepatitis B virus transcription. Sci Signal 2012; 5 (205) ra1
  • 39 Guerrieri F, Scisciani C, Belloni L , et al. HBx-induced repression of mir224 expression relieves the direct inhibitory effects of mir224 on HBV pgRNA to potentiate hbv replication. 47th Annual Meeting of the European Association for the Study of the Liver (EASL) J Hepatol 2012; 56 (S2) S176
  • 40 Guerrieri F, Belloni L, D'Andrea D , et al. A genome wide chromatin-immunoprecipitation (ChIPSeq) study identifies a broad repertoire of miRNAs as direct targets of HBx. 63rd Annual Meeting of the American-Association-for-the-Study-of-Liver-Diseases (AASLD). Hepatology 2012; 56 (S1) 213A
  • 41 Pan J, Lian Z, Wallett S, Feitelson MA. The hepatitis B x antigen effector, URG7, blocks tumour necrosis factor α-mediated apoptosis by activation of phosphoinositol 3-kinase and β-catenin. J Gen Virol 2007; 88 (Pt 12) 3275-3285
  • 42 Clippinger AJ, Bouchard MJ. Hepatitis B virus HBx protein localizes to mitochondria in primary rat hepatocytes and modulates mitochondrial membrane potential. J Virol 2008; 82 (14) 6798-6811
  • 43 Cho HK, Cheong KJ, Kim HY, Cheong J. Endoplasmic reticulum stress induced by hepatitis B virus X protein enhances cyclo-oxygenase 2 expression via activating transcription factor 4. Biochem J 2011; 435 (2) 431-439
  • 44 Yang B, Bouchard MJ. The hepatitis B virus X protein elevates cytosolic calcium signals by modulating mitochondrial calcium uptake. J Virol 2012; 86 (1) 313-327
  • 45 Li J, Liu Y, Wang Z , et al. Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment. J Virol 2011; 85 (13) 6319-6333
  • 46 Yoo YG, Oh SH, Park ES , et al. Hepatitis B virus X protein enhances transcriptional activity of hypoxia-inducible factor-1α through activation of mitogen-activated protein kinase pathway. J Biol Chem 2003; 278 (40) 39076-39084
  • 47 Sanz-Cameno P, Martín-Vílchez S, Lara-Pezzi E , et al. Hepatitis B virus promotes angiopoietin-2 expression in liver tissue: role of HBV X protein. Am J Pathol 2006; 169 (4) 1215-1222
  • 48 Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 2013; 13 (2) 123-135
  • 49 Kang TW, Yevsa T, Woller N , et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011; 479 (7374) 547-551
  • 50 Wiemann SU, Satyanarayana A, Tsahuridu M , et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J 2002; 16 (9) 935-942
  • 51 Plentz RR, Park YN, Lechel A , et al. Telomere shortening and inactivation of cell cycle checkpoints characterize human hepatocarcinogenesis. Hepatology 2007; 45 (4) 968-976
  • 52 Kojima H, Yokosuka O, Imazeki F, Saisho H, Omata M. Telomerase activity and telomere length in hepatocellular carcinoma and chronic liver disease. Gastroenterology 1997; 112 (2) 493-500
  • 53 Ozturk M, Arslan-Ergul A, Bagislar S, Senturk S, Yuzugullu H. Senescence and immortality in hepatocellular carcinoma. Cancer Lett 2009; 286 (1) 103-113
  • 54 Kawai H, Suda T, Aoyagi Y , et al. Quantitative evaluation of genomic instability as a possible predictor for development of hepatocellular carcinoma: comparison of loss of heterozygosity and replication error. Hepatology 2000; 31 (6) 1246-1250
  • 55 Forgues M, Difilippantonio MJ, Linke SP , et al. Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol Cell Biol 2003; 23 (15) 5282-5292
  • 56 Collado M, Gil J, Efeyan A , et al. Tumour biology: senescence in premalignant tumours. Nature 2005; 436 (7051) 642
  • 57 Benn J, Schneider RJ. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci U S A 1994; 91 (22) 10350-10354
  • 58 Chung TW, Lee YC, Kim CH. Hepatitis B viral HBx induces MMP-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. FASEB J 2004; 18 (10) 1123-1125
  • 59 Tarn C, Lee S, Hu Y, Ashendel C, Andrisani OM. Hepatitis B virus X protein differentially activates RAS-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes. J Biol Chem 2001; 276 (37) 34671-34680
  • 60 Huang J, Wang Y, Guo Y, Sun S. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology 2010; 52 (1) 60-70
  • 61 Wang XW, Forrester K, Yeh H, Feitelson MA, Gu JR, Harris CC. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc Natl Acad Sci U S A 1994; 91 (6) 2230-2234
  • 62 Zhao J, Wu G, Bu F , et al. Epigenetic silence of ankyrin-repeat-containing, SH3-domain-containing, and proline-rich-region- containing protein 1 (ASPP1) and ASPP2 genes promotes tumor growth in hepatitis B virus-positive hepatocellular carcinoma. Hepatology 2010; 51 (1) 142-153
  • 63 Park SH, Jung JK, Lim JS, Tiwari I, Jang KL. Hepatitis B virus X protein overcomes all-trans retinoic acid-induced cellular senescence by downregulating levels of p16 and p21 via DNA methylation. J Gen Virol 2011; 92 (Pt 6) 1309-1317
  • 64 Zender L, Xue W, Zuber J , et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 2008; 135 (5) 852-864
  • 65 Castilla A, Prieto J, Fausto N. Transforming growth factors β 1 and α in chronic liver disease. Effects of interferon alfa therapy. N Engl J Med 1991; 324 (14) 933-940
  • 66 Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 2005; 132 (14) 3151-3161
  • 67 van Zijl F, Zulehner G, Petz M , et al. Epithelial-mesenchymal transition in hepatocellular carcinoma. Future Oncol 2009; 5 (8) 1169-1179
  • 68 Yoo YD, Ueda H, Park K , et al. Regulation of transforming growth factor-β 1 expression by the hepatitis B virus (HBV) X transactivator. Role in HBV pathogenesis. J Clin Invest 1996; 97 (2) 388-395
  • 69 Lee DK, Park SH, Yi Y , et al. The hepatitis B virus encoded oncoprotein pX amplifies TGF-β family signaling through direct interaction with Smad4: potential mechanism of hepatitis B virus-induced liver fibrosis. Genes Dev 2001; 15 (4) 455-466
  • 70 Xu J, Lamouille S, Derynck R. TGF-β-induced epithelial to mesenchymal transition. Cell Res 2009; 19 (2) 156-172
  • 71 Battaglia S, Benzoubir N, Nobilet S , et al. Liver cancer-derived hepatitis C virus core proteins shift TGF-β responses from tumor suppression to epithelial-mesenchymal transition. PLoS ONE 2009; 4 (2) e4355
  • 72 Zhu Q, Wang Z, Hu Y , et al. miR-21 promotes migration and invasion by the miR-21-PDCD4-AP-1 feedback loop in human hepatocellular carcinoma. Oncol Rep 2012; 27 (5) 1660-1668
  • 73 Yang SZ, Zhang LD, Zhang Y , et al. HBx protein induces EMT through c-Src activation in SMMC-7721 hepatoma cell line. Biochem Biophys Res Commun 2009; 382 (3) 555-560
  • 74 Lara-Pezzi E, Roche S, Andrisani OM, Sánchez-Madrid F, López-Cabrera M. The hepatitis B virus HBx protein induces adherens junction disruption in a src-dependent manner. Oncogene 2001; 20 (26) 3323-3331
  • 75 Arzumanyan A, Friedman T, Kotei E, Ng IO, Lian Z, Feitelson MA. Epigenetic repression of E-cadherin expression by hepatitis B virus X antigen in liver cancer. Oncogene 2012; 31 (5) 563-572
  • 76 Sell S, Leffert HL. Liver cancer stem cells. J Clin Oncol 2008; 26 (17) 2800-2805
  • 77 Yamashita T, Budhu A, Forgues M, Wang XW. Activation of hepatic stem cell marker EpCAM by Wnt-β-catenin signaling in hepatocellular carcinoma. Cancer Res 2007; 67 (22) 10831-10839
  • 78 Roskams T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene 2006; 25 (27) 3818-3822
  • 79 Lee JS, Heo J, Libbrecht L , et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 2006; 12 (4) 410-416
  • 80 Yamashita T, Ji J, Budhu A , et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 2009; 136 (3) 1012-1024
  • 81 Ji J, Yamashita T, Budhu A , et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology 2009; 50 (2) 472-480
  • 82 Chan HL, Hui AY, Wong ML , et al. Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. Gut 2004; 53 (10) 1494-1498
  • 83 Kao JH, Chen PJ, Lai MY, Chen DS. Basal core promoter mutations of hepatitis B virus increase the risk of hepatocellular carcinoma in hepatitis B carriers. Gastroenterology 2003; 124 (2) 327-334
  • 84 Kuang SY, Jackson PE, Wang JB , et al. Specific mutations of hepatitis B virus in plasma predict liver cancer development. Proc Natl Acad Sci U S A 2004; 101 (10) 3575-3580
  • 85 Zoulim F, Locarnini S. Hepatitis B virus resistance to nucleos(t)ide analogues. Gastroenterology 2009; 137 (5) 1593-1608 , e1–e2
  • 86 Warner N, Locarnini S. The antiviral drug selected hepatitis B virus rtA181T/sW172* mutant has a dominant negative secretion defect and alters the typical profile of viral rebound. Hepatology 2008; 48 (1) 88-98
  • 87 Yeh CT, Chen T, Hsu CW , et al. Emergence of the rtA181T/sW172* mutant increased the risk of hepatoma occurrence in patients with lamivudine-resistant chronic hepatitis B. BMC Cancer 2011; 11: 398
  • 88 Nault JC, Zucman-Rossi J. Genetics of hepatobiliary carcinogenesis. Semin Liver Dis 2011; 31 (2) 173-187
  • 89 Sia D, Villanueva A. Signaling pathways in hepatocellular carcinoma. Oncology 2011; 81 (Suppl. 01) 18-23
  • 90 Laurent-Puig P, Legoix P, Bluteau O , et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 2001; 120 (7) 1763-1773
  • 91 Guichard C, Amaddeo G, Imbeaud S , et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012; 44 (6) 694-698
  • 92 Boyault S, Rickman DS, de Reyniès A , et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 2007; 45 (1) 42-52
  • 93 Hoshida Y, Moeini A, Alsinet C, Kojima K, Villanueva A. Gene signatures in the management of hepatocellular carcinoma. Semin Oncol 2012; 39 (4) 473-485
  • 94 Imbeaud S, Ladeiro Y, Zucman-Rossi J. Identification of novel oncogenes and tumor suppressors in hepatocellular carcinoma. Semin Liver Dis 2010; 30 (1) 75-86
  • 95 Zhang X, Liu S, Hu T, Liu S, He Y, Sun S. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology 2009; 50 (2) 490-499
  • 96 Ura S, Honda M, Yamashita T , et al. Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology 2009; 49 (4) 1098-1112
  • 97 Wang Y, Lu Y, Toh ST , et al. Lethal-7 is down-regulated by the hepatitis B virus X protein and targets signal transducer and activator of transcription 3. J Hepatol 2010; 53 (1) 57-66
  • 98 Ji J, Shi J, Budhu A , et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 2009; 361 (15) 1437-1447
  • 99 Calvisi DF, Ladu S, Gorden A , et al. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 2007; 117 (9) 2713-2722
  • 100 Zhao J, Wu G, Bu F , et al. Epigenetic silence of ankyrin-repeat-containing, SH3-domain-containing, and proline-rich-region- containing protein 1 (ASPP1) and ASPP2 genes promotes tumor growth in hepatitis B virus-positive hepatocellular carcinoma. Hepatology 2010; 51 (1) 142-153