Horm Metab Res 2013; 45(11): 786-794
DOI: 10.1055/s-0033-1348263
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Diet-dependent Alterations of Hepatic Scd1 Expression are Accompanied by Differences in Promoter Methylation

R. W. Schwenk
1   Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
,
W. Jonas
1   Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
,
S. B. Ernst
1   Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
,
A. Kammel
1   Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
,
M. Jähnert
1   Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
,
A. Schürmann
1   Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
› Author Affiliations
Further Information

Publication History

received 30 December 2012

accepted 22 May 2013

Publication Date:
26 June 2013 (online)

Abstract

Obesity and alterations of lipid homeostasis are hallmarks of the metabolic syndrome and largely influenced by the dietary conditions of the individual. Although heritability is considered to be a major risk factor, the almost 40 candidate genes identified by genome-wide association studies (GWAS) so far account for only 5–10% of the observed variance in BMI in human subjects. Alternatively, diet-induced changes of epigenetic gene regulation might be involved in disturbed lipid homeostasis and weight development. The aim of this study was to investigate how a high-carbohydrate diet (HCD; 70 kcal% from carbohydrates, 10 kcal% from fat) or a high-fat diet (HFD; 20 kcal% from carbohydrates, 60 kcal% from fat) affects hepatic expression of genes involved in fatty acid metabolism and if these alterations are correlated to changes in promoter methylation. Expression of stearoyl-CoA desaturase 1 (Scd1) was lower in livers from HFD-fed C57BL/6 J mice compared to HCD-fed animals and correlated inversely with the degree of DNA methylation at 2 distinct, adjacent CpG sites in the Scd1 promoter. In contrast, expression of transcription factors peroxisome proliferator activated receptor alpha and gamma (Ppara, Pparg), and sterol regulatory element binding transcription factor 1 (Srebf1) was not affected. The degree of hepatic Scd1 promoter methylation at these CpG sites correlated positively to fat mass and serum leptin levels, whereas serum ghrelin levels were inversely correlated with methylation at both CpG sites. Taken together, hepatic expression of Scd1 is differentially affected by carbohydrate- and lipid content of the diet. These differences in Scd1 expression are associated with altered promoter methylation, indicating that diets affect lipid metabolism in the liver via epigenetic mechanisms.

 
  • References

  • 1 Kahn R, Buse J, Ferrannini E, Stern M. The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2005; 28: 2289-2304
  • 2 Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology 2012; 142: 711-725 e716
  • 3 Eckardt K, Taube A, Eckel J. Obesity-associated insulin resistance in skeletal muscle: role of lipid accumulation and physical inactivity. Rev Endocr Metab Disord 2011; 12: 163-172
  • 4 Sun B, Karin M. Obesity, inflammation, and liver cancer. J Hepatol 2012; 56: 704-713
  • 5 McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med 2010; 363: 2339-2350
  • 6 Koza RA, Nikonova L, Hogan J, Rim JS, Mendoza T, Faulk C, Skaf J, Kozak LP. Changes in gene expression foreshadow diet-induced obesity in genetically identical mice. PLoS Genet 2006; 2: e81
  • 7 Barres R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, Krook A, Zierath JR. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 2009; 10: 189-198
  • 8 Ling C, Del Guerra S, Lupi R, Ronn T, Granhall C, Luthman H, Masiello P, Marchetti P, Groop L, Del Prato S. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 2008; 51: 615-622
  • 9 Parle-McDermott A, Ozaki M. The impact of nutrition on differential methylated regions of the genome. Adv Nutr 2011; 2: 463-471
  • 10 Jiang M, Zhang Y, Liu M, Lan MS, Fei J, Fan W, Gao X, Lu D. Hypermethylation of hepatic glucokinase and L-type pyruvate kinase promoters in high-fat diet-induced obese rats. Endocrinology 2011; 152: 1284-1289
  • 11 Ntambi JM. The regulation of stearoyl-CoA desaturase (SCD). Prog Lipid Res 1995; 34: 139-150
  • 12 Miyazaki M, Kim YC, Ntambi JM. A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis. J Lipid Res 2001; 42: 1018-1024
  • 13 Dobrzyn A, Ntambi JM. The role of stearoyl-CoA desaturase in the control of metabolism. Prostaglandins Leukot Essent Fatty Acids 2005; 73: 35-41
  • 14 Sampath H, Miyazaki M, Dobrzyn A, Ntambi JM. Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. J Biol Chem 2007; 282: 2483-2493
  • 15 Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X, Ntambi JM. Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab 2007; 6: 484-496
  • 16 Flowers MT, Ade L, Strable MS, Ntambi JM. Combined deletion of SCD1 from adipose tissue and liver does not protect mice from obesity. J Lipid Res 2012; 53: 1646-1653
  • 17 Biddinger SB, Miyazaki M, Boucher J, Ntambi JM, Kahn CR. Leptin suppresses stearoyl-CoA desaturase 1 by mechanisms independent of insulin and sterol regulatory element-binding protein-1c. Diabetes 2006; 55: 2032-2041
  • 18 de Fourmestraux V, Neubauer H, Poussin C, Farmer P, Falquet L, Burcelin R, Delorenzi M, Thorens B. Transcript profiling suggests that differential metabolic adaptation of mice to a high fat diet is associated with changes in liver to muscle lipid fluxes. J Biol Chem 2004; 279: 50743-50753
  • 19 Toye AA, Dumas ME, Blancher C, Rothwell AR, Fearnside JF, Wilder SP, Bihoreau MT, Cloarec O, Azzouzi I, Young S, Barton RH, Holmes E, McCarthy MI, Tatoud R, Nicholson JK, Scott J, Gauguier D. Subtle metabolic and liver gene transcriptional changes underlie diet-induced fatty liver susceptibility in insulin-resistant mice. Diabetologia 2007; 50: 1867-1879
  • 20 Stefan N, Peter A, Cegan A, Staiger H, Machann J, Schick F, Claussen CD, Fritsche A, Haring HU, Schleicher E. Low hepatic stearoyl-CoA desaturase 1 activity is associated with fatty liver and insulin resistance in obese humans. Diabetologia 2008; 51: 648-656
  • 21 Kluth O, Mirhashemi F, Scherneck S, Kaiser D, Kluge R, Neschen S, Joost HG, Schürmann A. Dissociation of lipotoxicity and glucotoxicity in a mouse model of obesity associated diabetes: role of forkhead box O1 (FOXO1) in glucose-induced beta cell failure. Diabetologia 2011; 54: 605-616
  • 22 Hesse D, Jaschke A, Kanzleiter T, Witte N, Augustin R, Hommel A, Puschel GP, Petzke KJ, Joost HG, Schupp M, Schurmann A. GTPase ARFRP1 is essential for normal hepatic glycogen storage and insulin-like growth factor 1 secretion. Mol Cell Biol 2012; 32: 4363-4374
  • 23 Jiang M, Zhang Y, Fei J, Chang X, Fan W, Qian X, Zhang T, Lu D. Rapid quantification of DNA methylation by measuring relative peak heights in direct bisulfite-PCR sequencing traces. Lab Invest 2010; 90: 282-290
  • 24 Sampath H, Ntambi JM. Stearoyl-coenzyme A desaturase 1, sterol regulatory element binding protein-1c and peroxisome proliferator-activated receptor-alpha: independent and interactive roles in the regulation of lipid metabolism. Curr Opin Clin Nutr Metab Care 2006; 9: 84-88
  • 25 Vucetic Z, Carlin JL, Totoki K, Reyes TM. Epigenetic dysregulation of the dopamine system in diet-induced obesity. J Neurochem 2012; 120: 891-898
  • 26 Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, Jing X, Renstrom E, Wollheim CB, Nitert MD, Ling C. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 2012; 26: 1203-1212
  • 27 Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics 2002; 18: 1427-1431
  • 28 Theander-Carrillo C, Wiedmer P, Cettour-Rose P, Nogueiras R, Perez-Tilve D, Pfluger P, Castaneda TR, Muzzin P, Schurmann A, Szanto I, Tschop MH, Rohner-Jeanrenaud F. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest 2006; 116: 1983-1993
  • 29 Mauvoisin D, Rocque G, Arfa O, Radenne A, Boissier P, Mounier C. Role of the PI3-kinase/mTor pathway in the regulation of the stearoyl CoA desaturase (SCD1) gene expression by insulin in liver. J Cell Commun Signal 2007; 1: 113-125
  • 30 Ntambi JM. Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver. J Biol Chem 1992; 267: 10925-10930
  • 31 Miyazaki M, Dobrzyn A, Man WC, Chu K, Sampath H, Kim HJ, Ntambi JM. Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. J Biol Chem 2004; 279: 25164-25171
  • 32 Caton PW, Holness MJ, Bishop-Bailey D, Sugden MC. PPARalpha-LXR as a novel metabolostatic signalling axis in skeletal muscle that acts to optimize substrate selection in response to nutrient status. Biochem J 2011; 437: 521-530
  • 33 Guinez C, Filhoulaud G, Rayah-Benhamed F, Marmier S, Dubuquoy C, Dentin R, Moldes M, Burnol AF, Yang X, Lefebvre T, Girard J, Postic C. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 2011; 60: 1399-1413
  • 34 Yoshikawa T, Shimano H, Yahagi N, Ide T, Amemiya-Kudo M, Matsuzaka T, Nakakuki M, Tomita S, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Takahashi A, Sone H, Osuga JiJ, Gotoda T, Ishibashi S, Yamada N. Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J Biol Chem 2002; 277: 1705-1711
  • 35 Chu K, Miyazaki M, Man WC, Ntambi JM. Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation. Mol Cell Biol 2006; 26: 6786-6798
  • 36 Milagro FI, Campion J, Garcia-Diaz DF, Goyenechea E, Paternain L, Martinez JA. High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J Physiol Biochem 2009; 65: 1-9
  • 37 Widiker S, Karst S, Wagener A, Brockmann GA. High-fat diet leads to a decreased methylation of the Mc4r gene in the obese BFMI and the lean B6 mouse lines. J Appl Gen 2010; 51: 193-197
  • 38 Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334: 292-295
  • 39 Zhang W, Della-Fera MA, Hartzell DL, Hausman D, Baile CA. Adipose tissue gene expression profiles in ob/ob mice treated with leptin. Life Sci 2008; 83: 35-42
  • 40 Mauvoisin D, Prevost M, Ducheix S, Arnaud MP, Mounier C. Key role of the ERK1/2 MAPK pathway in the transcriptional regulation of the Stearoyl-CoA Desaturase (SCD1) gene expression in response to leptin. Mol Cell Endocrinol 2010; 319: 116-128
  • 41 Velasquez DA, Martinez G, Romero A, Vazquez MJ, Boit KD, Dopeso-Reyes IG, Lopez M, Vidal A, Nogueiras R, Dieguez C. The central Sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin. Diabetes 2011; 60: 1177-1185
  • 42 Martins L, Fernandez-Mallo D, Novelle MG, Vazquez MJ, Tena-Sempere M, Nogueiras R, Lopez M, Dieguez C. Hypothalamic mTOR Signaling Mediates the Orexigenic Action of Ghrelin. PloS one 2012; 7: e46923
  • 43 Okamatsu Y, Matsuda K, Hiramoto I, Tani H, Kimura K, Yada Y, Kakuma T, Higuchi S, Kojima M, Matsuishi T. Ghrelin and leptin modulate immunity and liver function in overweight children. Pediatr Inter 2009; 51: 9-13
  • 44 Machado MV, Coutinho J, Carepa F, Costa A, Proenca H, Cortez-Pinto H. How adiponectin, leptin, and ghrelin orchestrate together and correlate with the severity of nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2012; 24: 1166-1172