Z Orthop Unfall 2015; 153(1): 99-119
DOI: 10.1055/s-0033-1358089
Refresher Orthopädie und Unfallchirurgie
Georg Thieme Verlag KG Stuttgart · New York

Tibiaschaftfrakturen

Fractures of the Tibial Shaft
S. Märdian
,
P. Schwabe
,
K.-D. Schaser
Further Information

Publication History

Publication Date:
04 March 2015 (online)

Zusammenfassung

Tibiaschaftfrakturen sind die am häufigsten auftretenden diaphysären Frakturen langer Röhrenknochen des Menschen. Die häufigsten Unfallmechanismen sind Verkehrsunfälle (37,5 %), Stolperstürze (17,8 %), Sportunfälle (30,9 %) gefolgt von Gewalttaten (4,5 %).

Die klinische Untersuchung mit korrekter Klassifikation des Frakturmusters und insbesondere des Grades des Weichteilschadens ist von immenser Bedeutung für die therapeutische Kaskade. Diese folgt vor allem – bedingt durch den vorliegenden Weichteilschaden – einem festgelegten Algorithmus. An bildgebender Diagnostik ist die konventionelle Radiografie obligat, Schnittbilddiagnostik ist komplexen Frakturmustern und zusätzlichen intraartikulären Pathologien vorbehalten.

Die Therapie der Tibiaschaftfraktur ist eine Domäne der operativen Stabilisierung, welche – in Abhängigkeit vom Weichteilschaden – primär erfolgen sollte. Hierbei sind intramedulläre Verfahren (allen voran die intramedulläre Marknagelosteosynthese) die Verfahren der Wahl.

Die schwerwiegendste Frühkomplikation dieser Verletzung ist das Kompartmentsyndrom. Dies bedarf der schnellen Diagnosestellung und eines adäquaten chirurgischen Managements, um ausgedehnte Myonekrosen mit ischämischen Kontrakturen und irreversiblen neurovaskulären Defiziten zu vermeiden. Abgesehen von postoperativen Infektionen, die vor allem bei offenen Verletzungen die vorherrschende Komplikation darstellen, treten Pseudarthrosen als typische und teilweise schwer behandelbare Spätkomplikationen auf, die je nach Typ einem dezidierten Therapiealgorithmus folgen.

Abstract

The tibia shaft is the most often fractured long bone of human beings. Among others traffic accidents (37.5 %), falls (17.8 %), sport accidents (30.9 %) and assaults (4.5 %) are typical mechanisms. A brief clinical examination including the correct classification of the fracture pattern and even more important the degree of the soft tissue damage are the most crucial factors for the following therapeutic cascade. This follows a defined algorithm based on the degree of soft tissue damage. As biplanar X-ray diagnostics are obligatory, CT scans are subject to complex fracture patterns and accompanying intraarticular pathologies.

The treatment of tibial shaft fractures is the preserve of operative stabilization, which should be done primarily depending on the degree of the soft tissue injury. Here intramedullary methods – especially intramedullary nailing – are the golden standard.

The most serious complication of these fractures is the development of a compartment syndrome. This requires rapid diagnosis and an adequate surgical management in order to avoid extensive muscle necrosis with ischaemic contractures and irreversible neurovascular deficits. Apart from postoperative infections, which are the predominant complication especially in open injuries, non union provide typical and late complications which are partly difficult to treat. These should, depending on their type, follow a dedicated treatment algorithm.

Literaturverzeichnis als PDF

 
  • Literatur

  • 1 Heckman JD, Sarasohn-Kahn J. The economics of treating tibia fractures. The cost of delayed unions. Bull Hosp Jt Dis 1997; 56: 63-72
  • 2 Court-Brown CM, McBirnie J. The epidemiology of tibial fractures. J Bone Joint Surg Br 1995; 77: 417-421
  • 3 Antonova E, Le TK, Burge R et al. Tibia shaft fractures: costly burden of nonunions. BMC Musculoskelet Disord 2013; 14: 42
  • 4 Miller NC, Askew AE. Tibia fractures. An overview of evaluation and treatment. Orthop Nurs 2007; 26: 216-223
  • 5 Ward WT, Rihn JA. The impact of trauma in an urban pediatric orthopaedic practice. J Bone Joint Surg Am 2006; 88: 2759-2764
  • 6 Kute B, Nyland JA, Roberts CS et al. Recreational all-terrain vehicle injuries among children: an 11-year review of a Central Kentucky level I pediatric trauma center database. J Pediatr Orthop 2007; 27: 851-855
  • 7 Grütter R, Cordey J, Bühler M et al. The epidemiology of diaphyseal fractures of the tibia. Injury 2000; 31: C64-C67
  • 8 Anderson LD, Hutchins WC, Wright PE et al. Fractures of the tibia and fibula treated by casts and transfixing pins. Clin Orthop Relat Res 1974; 179-191
  • 9 Gustilo RB, Mendoza RM, Williams DN. Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma 1984; 24: 742-746
  • 10 Khatod M, Botte MJ, Hoyt DB et al. Outcomes in open tibia fractures: relationship between delay in treatment and infection. J Trauma 2003; 55: 949-954
  • 11 Blick SS, Brumback RJ, Poka A et al. Compartment syndrome in open tibial fractures. J Bone Joint Surg Am 1986; 68: 1348-1353
  • 12 McQueen MM, Gaston P, Court-Brown CM. Acute compartment syndrome. Who is at risk?. J Bone Joint Surg Br 2000; 82: 200-203
  • 13 Griffiths DL. The management of acute circulatory failure in an injured limb. J Bone Joint Surg Br 1948; 30B: 280-289
  • 14 DeLee JC, Stiehl JB. Open tibia fracture with compartment syndrome. Clin Orthop Relat Res 1981; 175-184
  • 15 Tischenko GJ, Goodman SB. Compartment syndrome after intramedullary nailing of the tibia. J Bone Joint Surg Am 1990; 72: 41-44
  • 16 Elliott KG, Johnstone AJ. Diagnosing acute compartment syndrome. J Bone Joint Surg Br 2003; 85: 625-632
  • 17 Schaser KD, Vollmar B, Menger MD et al. In vivo analysis of microcirculation following closed soft-tissue injury. J Orthop Res 1999; 17: 678-685
  • 18 Frink M, Hildebrand F, Krettek C et al. Compartment syndrome of the lower leg and foot. Clin Orthop Relat Res 2010; 468: 940-950
  • 19 Müller M, Disch AC, Zabel N et al. Initial intramuscular perfusion pressure predicts early skeletal muscle function following isolated tibial fractures. J Orthop Surg Res 2008; 3: 14
  • 20 Patzakis MJ, Wilkins J. Factors influencing infection rate in open fracture wounds. Clin Orthop Relat Res 1989; 243: 36-40
  • 21 Geyer LL, Koerner M, Wirth S et al. Polytrauma: optimal imaging and evaluation algorithm. Semin Musculoskelet Radiol 2013; 17: 371-379
  • 22 Foster BR, Anderson SW, Uyeda JW et al. Integration of 64-detector lower extremity CT angiography into whole-body trauma imaging: feasibility and early experience. Radiology 2011; 261: 787-795
  • 23 Kuzniec S, Kauffman P, Molnár LJ et al. Diagnosis of limbs and neck arterial trauma using duplex ultrasonography. Cardiovasc Surg 1998; 6: 358-366
  • 24 Panetta TF, Hunt JP, Buechter KJ et al. Duplex ultrasonography versus arteriography in the diagnosis of arterial injury: an experimental study. J Trauma 1992; 33: 627-635
  • 25 Müller ME. The comprehensive classification of fractures of long bones. In: Müller ME, ed. Manual of internal Fixation. 3rd ed. Berlin: Springer; 1990: 128-137
  • 26 Meling T, Harboe K, Enoksen CH et al. How reliable and accurate is the AO/OTA comprehensive classification for adult long-bone fractures?. J Trauma Acute Care Surg 2012; 73: 224-231
  • 27 Gustilo RB, Anderson JT. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am 1976; 58: 453-458
  • 28 Gustilo RB, Gruninger RP, Davis T. Classification of type III (severe) open fractures relative to treatment and results. Orthopedics 1987; 10: 1781-1788
  • 29 Brumback RJ, Jones AL. Interobserver agreement in the classification of open fractures of the tibia. The results of a survey of two hundred and forty-five orthopaedic surgeons. J Bone Joint Surg Am 1994; 76: 1162-1166
  • 30 Horn BD, Rettig ME. Interobserver reliability in the Gustilo and Anderson classification of open fractures. J Orthop Trauma 1993; 7: 357-360
  • 31 Tscherne H, Oestern HJ. Die Klassifizierung des Weichteilschadens bei offenen und geschlossenen Frakturen. Unfallheilkunde 1982; 85: 111-115
  • 32 Stürmer KM. Unterschenkelschaftfraktur. In: Stürmer KM, Hrsg. Leitlinien Unfallchirurgie. Stuttgart: Thieme; 1999: 184-196
  • 33 Sarmiento A, Gersten LM, Sobol PA et al. Tibial shaft fractures treated with functional braces. Experience with 780 fractures. J Bone Joint Surg Br 1989; 71: 602-609
  • 34 Mayr E. Tibiafrakturen. Chirurg 2002; 73: 642-661
  • 35 Gordon JE, OʼDonnell JC. Tibia fractures: what should be fixed?. J Pediatr Orthop 2012; 32: S52-S61
  • 36 Lieber J, Schmittenbecher P. Developments in the treatment of pediatric long bone shaft fractures. Eur J Pediatr Surg 2013; 23: 427-433
  • 37 Coles CP, Gross M. Closed tibial shaft fractures: management and treatment complications. A review of the prospective literature. Can J Surg 2000; 43: 256-262
  • 38 Bode G, Strohm PC, Südkamp NP et al. Tibial shaft fractures – management and treatment options. A review of the current literature. Acta Chir Orthop Traumatol Cech 2012; 79: 499-505
  • 39 Bhandari M, Guyatt GH, Swiontkowski MF et al. Treatment of open fractures of the shaft of the tibia. J Bone Joint Surg Br 2001; 83: 62-68
  • 40 Bhandari M, Guyatt GH, Tong D et al. Reamed versus nonreamed intramedullary nailing of lower extremity long bone fractures: a systematic overview and meta-analysis. J Orthop Trauma 2000; 14: 2-9
  • 41 Hoenig M, Gao F, Kinder J et al. Extra-articular distal tibia fractures: a mechanical evaluation of 4 different treatment methods. J Orthop Trauma 2010; 24: 30-35
  • 42 Lenz M, Gueorguiev B, Richards RG et al. Fatigue performance of angle-stable tibial nail interlocking screws. Int Orthop 2013; 37: 113-118
  • 43 Hontzsch D, Blauth M, Attal R. Winkelstabile Verriegelung von Marknägeln mit dem Angular Stable Locking System® (ASLS). Oper Orthop Traumatol 2011; 23: 387-396
  • 44 Wähnert D, Stolarczyk Y, Hoffmeier KL et al. Long-term stability of angle-stable versus conventional locked intramedullary nails in distal tibia fractures. BMC Musculoskelet Disord 2013; 14: 66
  • 45 Reynders PA, Broos PL. Healing of closed femoral shaft fractures treated with the AO unreamed femoral nail. A comparative study with the AO reamed femoral nail. Injury 2000; 31: 367-371
  • 46 Wenda K et al. Pathogenesis and clinical relevance of bone marrow embolism in medullary nailing-demonstrated by intraoperative echocardiography. Injury 1993; 24: S73-S81
  • 47 Högel F, Schlegel U, Südkamp N et al. Fracture healing after reamed and unreamed intramedullary nailing in sheep tibia. Injury 2011; 42: 667-674
  • 48 Müller CA, Dietrich M, Morakis P et al. Klinische Ergebnisse der primären Marknagelosteosynthese mit dem unaufgebohrten AO/ASIF Tibiamarknagel von offenen Tibiaschaftfrakturen. Unfallchirurg 1998; 101: 830-837
  • 49 Bhandari M, Guyatt G, Tornetta P. Randomized trial of reamed and unreamed intramedullary nailing of tibial shaft fractures. J Bone Joint Surg Am 2008; 90: 2567-2578
  • 50 Duan X, Li T, Mohammed AQ et al. Reamed intramedullary nailing versus unreamed intramedullary nailing for shaft fracture of femur: a systematic literature review. Arch Orthop Trauma Surg 2011; 131: 1445-1452
  • 51 Teitz CC, Carter DR, Frankel VH. Problems associated with tibial fractures with intact fibulae. J Bone Joint Surg Am 1980; 62: 770-776
  • 52 Stedtfeld HW, Mittlmeier T, Landgraf P et al. The logic and clinical applications of blocking screws. J Bone Joint Surg Am 2004; 86-A: 17-25
  • 53 Krettek C, Miclau T, Schandelmaier P et al. The mechanical effect of blocking screws (“Poller screws”) in stabilizing tibia fractures with short proximal or distal fragments after insertion of small-diameter intramedullary nails. J Orthop Trauma 1999; 13: 550-553
  • 54 Krettek C, Stephan C, Schandelmaier P et al. The use of Poller screws as blocking screws in stabilising tibial fractures treated with small diameter intramedullary nails. J Bone Joint Surg Br 1999; 81: 963-968
  • 55 Weber TG, Harrington RM, Henley MB et al. The role of fibular fixation in combined fractures of the tibia and fibula: a biomechanical investigation. J Orthop Trauma 1997; 11: 206-211
  • 56 Whorton AM, Henley MB. The role of fixation of the fibula in open fractures of the tibial shaft with fractures of the ipsilateral fibula: indications and outcomes. Orthopedics 1998; 21: 1101-1105
  • 57 Strecker W, Suger G, Kinzl L. Lokale Komplikationen der Marknagelung. Orthopäde 1996; 25: 274-291
  • 58 Richter D, Hahn MP, Laun RA et al. Der sprunggelenksnahe Unterschenkelbruch. Ist die Osteosynthese mit ungebohrtem Marknagel ausreichend?. Chirurg 1998; 69: 563-570
  • 59 Morin PM, Reindl R, Harvey EJ et al. Fibular fixation as an adjuvant to tibial intramedullary nailing in the treatment of combined distal third tibia and fibula fractures: a biomechanical investigation. Can J Surg 2008; 51: 45-50
  • 60 Giannoudis PV, Papakostidis C, Roberts C. A review of the management of open fractures of the tibia and femur. J Bone Joint Surg Br 2006; 88: 281-289
  • 61 Schwabe P, Haas NP, Schaser KD. Extremitätenfrakturen mit schwerem offenem Weichteilschaden. Initiales Management und rekonstruktive Versorgungsstrategien. Unfallchirurg 2010; 113: 647-670 quiz 671–672
  • 62 Fong K, Truong V, Foote CJ et al. Predictors of nonunion and reoperation in patients with fractures of the tibia: an observational study. BMC Musculoskelet Disord 2013; 14: 103
  • 63 Baierlein SA. Frakturklassifikationen. Stuttgart: Thieme; 2011: 95-97 [Abb. 4.38; 4.39; 4.40]