Semin Liver Dis 2013; 33(04): 358-368
DOI: 10.1055/s-0033-1358524
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

HCV and Host Lipids: An Intimate Connection

Esperance A.K. Schaefer
1   Massachusetts General Hospital, Harvard Medical School, GI Unit, Boston, Massachusetts
,
Raymond T. Chung
1   Massachusetts General Hospital, Harvard Medical School, GI Unit, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
12 November 2013 (online)

Abstract

The hepatitis C virus (HCV) requires elements of host lipid metabolism for every step in the viral life cycle. Clinically, it has long been observed that patients with chronic hepatitis C have lower nonhigh-density lipoprotein cholesterol, and these levels rise after successful treatment. The HCV itself circulates as a highly lipidated lipoviral particle, which closely resembles very low-density lipoprotein (VLDL). Several required coentry factors for the virus to gain access to the hepatocytes have been described, and several, including SRB1, LDL-R, and the NPC1L1 receptors, are important receptors for lipoprotein and cholesterol uptake. Inside the cell, the virus induces lipogenesis, and specifically induces the master regulator sterol response element binding protein. Viral replication then requires the concerted efforts of viral proteins combined with several host factors involved in cholesterol synthesis. The virus is then packaged alongside the cellular machinery for VLDL production. The complex interplay highlights pathways of hepatic steatosis and unveils drug targets for the treatment of HCV.

 
  • References

  • 1 Zaltron S, Spinetti A, Biasi L, Baiguera C, Castelli F. Chronic HCV infection: epidemiological and clinical relevance. BMC Infect Dis 2012; 12 (Suppl. 02) S2
  • 2 Merion RM. Current status and future of liver transplantation. Semin Liver Dis 2010; 30 (4) 411-421
  • 3 Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 1989; 244 (4902) 359-362
  • 4 Wakita T, Pietschmann T, Kato T , et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 2005; 11 (7) 791-796
  • 5 Lindenbach BD, Meuleman P, Ploss A , et al. Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc Natl Acad Sci U S A 2006; 103 (10) 3805-3809
  • 6 Dienes HP, Popper H, Arnold W, Lobeck H. Histologic observations in human hepatitis non-A, non-B. Hepatology 1982; 2 (5) 562-571
  • 7 Goodman ZD, Ishak KG. Histopathology of hepatitis C virus infection. Semin Liver Dis 1995; 15 (1) 70-81
  • 8 Hourigan LF, Macdonald GA, Purdie D , et al. Fibrosis in chronic hepatitis C correlates significantly with body mass index and steatosis. Hepatology 1999; 29 (4) 1215-1219
  • 9 Rubbia-Brandt L, Quadri R, Abid K , et al. Hepatocyte steatosis is a cytopathic effect of hepatitis C virus genotype 3. J Hepatol 2000; 33 (1) 106-115
  • 10 Abid K, Pazienza V, de Gottardi A , et al. An in vitro model of hepatitis C virus genotype 3a-associated triglycerides accumulation. J Hepatol 2005; 42 (5) 744-751
  • 11 Siagris D, Christofidou M, Theocharis GJ , et al. Serum lipid pattern in chronic hepatitis C: histological and virological correlations. J Viral Hepat 2006; 13 (1) 56-61
  • 12 Petit JM, Benichou M, Duvillard L , et al. Hepatitis C virus-associated hypobetalipoproteinemia is correlated with plasma viral load, steatosis, and liver fibrosis. Am J Gastroenterol 2003; 98 (5) 1150-1154
  • 13 Lambert JE, Bain VG, Ryan EA, Thomson AB, Clandinin MT. Elevated lipogenesis and diminished cholesterol synthesis in patients with hepatitis C viral infection compared to healthy humans. Hepatology 2013; 57 (5) 1697-1704
  • 14 Clark PJ, Thompson AJ, Vock DM , et al. Hepatitis C virus selectively perturbs the distal cholesterol synthesis pathway in a genotype-specific manner. Hepatology 2012; 56 (1) 49-56
  • 15 Corey KE, Kane E, Munroe C, Barlow LL, Zheng H, Chung RT. Hepatitis C virus infection and its clearance alter circulating lipids: implications for long-term follow-up. Hepatology 2009; 50 (4) 1030-1037
  • 16 Hui JM, Kench J, Farrell GC , et al. Genotype-specific mechanisms for hepatic steatosis in chronic hepatitis C infection. J Gastroenterol Hepatol 2002; 17 (8) 873-881
  • 17 Corey KE, Mendez-Navarro J, Barlow LL , et al. Acute hepatitis C infection lowers serum lipid levels. J Viral Hepat 2011; 18 (7) e366-e371
  • 18 Butt AA, Xiaoqiang W, Budoff M, Leaf D, Kuller LH, Justice AC. Hepatitis C virus infection and the risk of coronary disease. Clin Infect Dis 2009; 49 (2) 225-232
  • 19 Petta S, Torres D, Fazio G , et al. Carotid atherosclerosis and chronic hepatitis C: a prospective study of risk associations. Hepatology 2012; 55 (5) 1317-1323
  • 20 Mason AL, Lau JY, Hoang N , et al. Association of diabetes mellitus and chronic hepatitis C virus infection. Hepatology 1999; 29 (2) 328-333
  • 21 Mostafa A, Mohamed MK, Saeed M , et al. Hepatitis C infection and clearance: impact on atherosclerosis and cardiometabolic risk factors. Gut 2010; 59 (8) 1135-1140
  • 22 Bridge SH, Sheridan DA, Felmlee DJ , et al. Insulin resistance and low-density apolipoprotein B-associated lipoviral particles in hepatitis C virus genotype 1 infection. Gut 2011; 60 (5) 680-687
  • 23 Sheridan DA, Price DA, Schmid ML , et al. Apolipoprotein B-associated cholesterol is a determinant of treatment outcome in patients with chronic hepatitis C virus infection receiving anti-viral agents interferon-alpha and ribavirin. Aliment Pharmacol Ther 2009; 29 (12) 1282-1290
  • 24 Harrison SA, Rossaro L, Hu KQ , et al. Serum cholesterol and statin use predict virological response to peginterferon and ribavirin therapy. Hepatology 2010; 52 (3) 864-874
  • 25 Clark PJ, Thompson AJ, Zhu M , et al; IDEAL investigators. Interleukin 28B polymorphisms are the only common genetic variants associated with low-density lipoprotein cholesterol (LDL-C) in genotype-1 chronic hepatitis C and determine the association between LDL-C and treatment response. J Viral Hepat 2012; 19 (5) 332-340
  • 26 Thomssen R, Bonk S, Propfe C, Heermann KH, Köchel HG, Uy A. Association of hepatitis C virus in human sera with beta-lipoprotein. Med Microbiol Immunol (Berl) 1992; 181 (5) 293-300
  • 27 Nielsen SU, Bassendine MF, Burt AD, Martin C, Pumeechockchai W, Toms GL. Association between hepatitis C virus and very-low-density lipoprotein (VLDL)/LDL analyzed in iodixanol density gradients. J Virol 2006; 80 (5) 2418-2428
  • 28 André P, Komurian-Pradel F, Deforges S , et al. Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 2002; 76 (14) 6919-6928
  • 29 Gastaminza P, Dryden KA, Boyd B , et al. Ultrastructural and biophysical characterization of hepatitis C virus particles produced in cell culture. J Virol 2010; 84 (21) 10999-11009
  • 30 Scholtes C, Ramière C, Rainteau D , et al. High plasma level of nucleocapsid-free envelope glycoprotein-positive lipoproteins in hepatitis C patients. Hepatology 2012; 56 (1) 39-48
  • 31 Merz A, Long G, Hiet MS , et al. Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. J Biol Chem 2011; 286 (4) 3018-3032
  • 32 Catanese MT, Uryu K, Kopp M , et al. Ultrastructural analysis of hepatitis C virus particles. Proc Natl Acad Sci U S A 2013; 110 (23) 9505-9510
  • 33 Dao Thi VL, Granier C, Zeisel MB , et al. Characterization of hepatitis C virus particle subpopulations reveals multiple usage of the scavenger receptor BI for entry steps. J Biol Chem 2012; 287 (37) 31242-31257
  • 34 Ploss A, Evans MJ. Hepatitis C virus host cell entry. Curr Opin Virol 2012; 2 (1) 14-19
  • 35 Ploss A, Dubuisson J. New advances in the molecular biology of hepatitis C virus infection: towards the identification of new treatment targets. Gut 2012; 61 (S1) i25-35
  • 36 Jiang J, Cun W, Wu X, Shi Q, Tang H, Luo G. Hepatitis C virus attachment mediated by apolipoprotein E binding to cell surface heparan sulfate. J Virol 2012; 86 (13) 7256-7267
  • 37 Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996; 271 (5248) 518-520
  • 38 Covey SD, Krieger M, Wang W, Penman M, Trigatti BL. Scavenger receptor class B type I-mediated protection against atherosclerosis in LDL receptor-negative mice involves its expression in bone marrow-derived cells. Arterioscler Thromb Vasc Biol 2003; 23 (9) 1589-1594
  • 39 von Hahn T, Lindenbach BD, Boullier A , et al. Oxidized low-density lipoprotein inhibits hepatitis C virus cell entry in human hepatoma cells. Hepatology 2006; 43 (5) 932-942
  • 40 Zahid MN, Turek M, Xiao F , et al. The postbinding activity of scavenger receptor class B type I mediates initiation of hepatitis C virus infection and viral dissemination. Hepatology 2013; 57 (2) 492-504
  • 41 Catanese MT, Ansuini H, Graziani R , et al. Role of scavenger receptor class B type I in hepatitis C virus entry: kinetics and molecular determinants. J Virol 2010; 84 (1) 34-43
  • 42 Dorner M, Horwitz JA, Donovan BM , et al. Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature 2013; 501 (7466) 237-241
  • 43 Catanese MT, Loureiro J, Jones CT, Dorner M, von Hahn T, Rice CM. Different requirements for scavenger receptor class B type I in hepatitis C virus cell-free versus cell-to-cell transmission. J Virol 2013; 87 (15) 8282-8293
  • 44 Syder AJ, Lee H, Zeisel MB , et al. Small molecule scavenger receptor BI antagonists are potent HCV entry inhibitors. J Hepatol 2011; 54 (1) 48-55
  • 45 Lacek K, Vercauteren K, Grzyb K , et al. Novel human SR-BI antibodies prevent infection and dissemination of HCV in vitro and in humanized mice. J Hepatol 2012; 57 (1) 17-23
  • 46 Zeisel MB, Koutsoudakis G, Schnober EK , et al. Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology 2007; 46 (6) 1722-1731
  • 47 Pileri P, Uematsu Y, Campagnoli S , et al. Binding of hepatitis C virus to CD81. Science 1998; 282 (5390) 938-941
  • 48 Kapadia SB, Chisari FV. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc Natl Acad Sci U S A 2005; 102 (7) 2561-2566
  • 49 Owen DM, Huang H, Ye J, Gale Jr M. Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor. Virology 2009; 394 (1) 99-108
  • 50 Mazumdar B, Banerjee A, Meyer K, Ray R. Hepatitis C virus E1 envelope glycoprotein interacts with apolipoproteins in facilitating entry into hepatocytes. Hepatology 2011; 54 (4) 1149-1156
  • 51 Albecka A, Belouzard S, Op de Beeck A , et al. Role of low-density lipoprotein receptor in the hepatitis C virus life cycle. Hepatology 2012; 55 (4) 998-1007
  • 52 Sainz Jr B, Barretto N, Martin DN , et al. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 2012; 18 (2) 281-285
  • 53 Su AI, Pezacki JP, Wodicka L , et al. Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci U S A 2002; 99 (24) 15669-15674
  • 54 Fujino T, Nakamuta M, Yada R , et al. Expression profile of lipid metabolism-associated genes in hepatitis C virus-infected human liver. Hepatol Res 2010; 40 (9) 923-929
  • 55 Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89 (3) 331-340
  • 56 Jeon TI, Osborne TF. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab 2012; 23 (2) 65-72
  • 57 Waris G, Felmlee DJ, Negro F, Siddiqui A. Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress. J Virol 2007; 81 (15) 8122-8130
  • 58 Park CY, Jun HJ, Wakita T, Cheong JH, Hwang SB. Hepatitis C virus nonstructural 4B protein modulates sterol regulatory element-binding protein signaling via the AKT pathway. J Biol Chem 2009; 284 (14) 9237-9246
  • 59 Kim KH, Hong SP, Kim K, Park MJ, Kim KJ, Cheong J. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPARgamma. Biochem Biophys Res Commun 2007; 355 (4) 883-888
  • 60 García-Mediavilla MV, Pisonero-Vaquero S, Lima-Cabello E , et al. Liver X receptor α-mediated regulation of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication. Lab Invest 2012; 92 (8) 1191-1202
  • 61 Oem JK, Jackel-Cram C, Li YP , et al. Activation of sterol regulatory element-binding protein 1c and fatty acid synthase transcription by hepatitis C virus non-structural protein 2. J Gen Virol 2008; 89 (Pt 5) 1225-1230
  • 62 Jackel-Cram C, Babiuk LA, Liu Q. Up-regulation of fatty acid synthase promoter by hepatitis C virus core protein: genotype-3a core has a stronger effect than genotype-1b core. J Hepatol 2007; 46 (6) 999-1008
  • 63 Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 2005; 309 (5740) 1577-1581
  • 64 Jangra RK, Yi M, Lemon SM. Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. J Virol 2010; 84 (13) 6615-6625
  • 65 Lanford RE, Hildebrandt-Eriksen ES, Petri A , et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010; 327 (5962) 198-201
  • 66 Janssen HL, Reesink HW, Lawitz EJ , et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368 (18) 1685-1694
  • 67 Esau C, Davis S, Murray SF , et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3 (2) 87-98
  • 68 Singaravelu R, Chen R, Lyn RK , et al. Hepatitis C virus induced up-regulation of microRNA-27: A novel mechanism for hepatic steatosis. Hepatology 2013;
  • 69 Cheng Y, Dharancy S, Malapel M, Desreumaux P. Hepatitis C virus infection down-regulates the expression of peroxisome proliferator-activated receptor alpha and carnitine palmitoyl acyl-CoA transferase 1A. World J Gastroenterol 2005; 11 (48) 7591-7596
  • 70 Vescovo T, Romagnoli A, Perdomo AB , et al. Autophagy protects cells from HCV-induced defects in lipid metabolism. Gastroenterology 2012; 142 (3) 644-653 , e3
  • 71 Li Q, Pène V, Krishnamurthy S, Cha H, Liang TJ. Hepatitis C virus infection activates an innate pathway involving IKK-α in lipogenesis and viral assembly. Nat Med 2013; 19 (6) 722-729
  • 72 Ye J, Wang C, Sumpter Jr R, Brown MS, Goldstein JL, Gale Jr M. Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation. Proc Natl Acad Sci U S A 2003; 100 (26) 15865-15870
  • 73 Kim SS, Peng LF, Lin W , et al. A cell-based, high-throughput screen for small molecule regulators of hepatitis C virus replication. Gastroenterology 2007; 132 (1) 311-320
  • 74 Peng LF, Schaefer EA, Maloof N , et al. Ceestatin, a novel small molecule inhibitor of hepatitis C virus replication, inhibits 3-hydroxy-3-methylglutaryl-coenzyme A synthase. J Infect Dis 2011; 204 (4) 609-616
  • 75 Wang C, Gale Jr M, Keller BC , et al. Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication. Mol Cell 2005; 18 (4) 425-434
  • 76 Rodgers MA, Villareal VA, Schaefer EA , et al. Lipid metabolite profiling identifies desmosterol metabolism as a new antiviral target for hepatitis C virus. J Am Chem Soc 2012; 134 (16) 6896-6899
  • 77 Yang W, Hood BL, Chadwick SL , et al. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology 2008; 48 (5) 1396-1403
  • 78 Nasheri N, Joyce M, Rouleau Y , et al. Modulation of fatty acid synthase enzyme activity and expression during hepatitis C virus replication. Chem Biol 2013; 20 (4) 570-582
  • 79 Huang JT, Tseng CP, Liao MH , et al. Hepatitis C virus replication is modulated by the interaction of nonstructural protein NS5B and fatty acid synthase. J Virol 2013; 87 (9) 4994-5004
  • 80 Tai AW, Benita Y, Peng LF , et al. A functional genomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe 2009; 5 (3) 298-307
  • 81 Li Q, Brass AL, Ng A , et al. A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc Natl Acad Sci U S A 2009; 106 (38) 16410-16415
  • 82 Vaillancourt FH, Pilote L, Cartier M , et al. Identification of a lipid kinase as a host factor involved in hepatitis C virus RNA replication. Virology 2009; 387 (1) 5-10
  • 83 Tai AW, Salloum S. The role of the phosphatidylinositol 4-kinase PI4KA in hepatitis C virus-induced host membrane rearrangement. PLoS ONE 2011; 6 (10) e26300
  • 84 Romero-Brey I, Merz A, Chiramel A , et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog 2012; 8 (12) e1003056
  • 85 Miyanari Y, Atsuzawa K, Usuda N , et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 2007; 9 (9) 1089-1097
  • 86 Lyn RK, Kennedy DC, Sagan SM , et al. Direct imaging of the disruption of hepatitis C virus replication complexes by inhibitors of lipid metabolism. Virology 2009; 394 (1) 130-142
  • 87 Depla M, Uzbekov R, Hourioux C , et al. Ultrastructural and quantitative analysis of the lipid droplet clustering induced by hepatitis C virus core protein. Cell Mol Life Sci 2010; 67 (18) 3151-3161
  • 88 Shavinskaya A, Boulant S, Penin F, McLauchlan J, Bartenschlager R. The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly. J Biol Chem 2007; 282 (51) 37158-37169
  • 89 Roingeard P, Hourioux C. Hepatitis C virus core protein, lipid droplets and steatosis. J Viral Hepat 2008; 15 (3) 157-164
  • 90 Piodi A, Chouteau P, Lerat H, Hézode C, Pawlotsky JM. Morphological changes in intracellular lipid droplets induced by different hepatitis C virus genotype core sequences and relationship with steatosis. Hepatology 2008; 48 (1) 16-27
  • 91 Counihan NA, Rawlinson SM, Lindenbach BD. Trafficking of hepatitis C virus core protein during virus particle assembly. PLoS Pathog 2011; 7 (10) e1002302
  • 92 Herker E, Harris C, Hernandez C , et al. Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Med 2010; 16 (11) 1295-1298
  • 93 Tanaka T, Kuroda K, Ikeda M, Wakita T, Kato N, Makishima M. Hepatitis C virus NS4B targets lipid droplets through hydrophobic residues in the amphipathic helices. J Lipid Res 2013; 54 (4) 881-892
  • 94 Camus G, Herker E, Modi AA , et al. Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core. J Biol Chem 2013; 288 (14) 9915-9923
  • 95 Harris C, Herker E, Farese Jr RV, Ott M. Hepatitis C virus core protein decreases lipid droplet turnover: a mechanism for core-induced steatosis. J Biol Chem 2011; 286 (49) 42615-42625
  • 96 Benoist F, Grand-Perret T. Co-translational degradation of apolipoprotein B100 by the proteasome is prevented by microsomal triglyceride transfer protein. Synchronized translation studies on HepG2 cells treated with an inhibitor of microsomal triglyceride transfer protein. J Biol Chem 1997; 272 (33) 20435-20442
  • 97 Huang H, Sun F, Owen DM , et al. Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc Natl Acad Sci U S A 2007; 104 (14) 5848-5853
  • 98 Nahmias Y, Goldwasser J, Casali M , et al. Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology 2008; 47 (5) 1437-1445
  • 99 Benga WJ, Krieger SE, Dimitrova M , et al. Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles. Hepatology 2010; 51 (1) 43-53
  • 100 Goldwasser J, Cohen PY, Lin W , et al. Naringenin inhibits the assembly and long-term production of infectious hepatitis C virus particles through a PPAR-mediated mechanism. J Hepatol 2011; 55 (5) 963-971
  • 101 Jiang J, Luo G. Apolipoprotein E but not B is required for the formation of infectious hepatitis C virus particles. J Virol 2009; 83 (24) 12680-12691
  • 102 Mirandola S, Realdon S, Iqbal J , et al. Liver microsomal triglyceride transfer protein is involved in hepatitis C liver steatosis. Gastroenterology 2006; 130 (6) 1661-1669
  • 103 O'Leary JG, Chan JL, McMahon CM, Chung RT. Atorvastatin does not exhibit antiviral activity against HCV at conventional doses: a pilot clinical trial. Hepatology 2007; 45 (4) 895-898
  • 104 Bader T, Fazili J, Madhoun M , et al. Fluvastatin inhibits hepatitis C replication in humans. Am J Gastroenterol 2008; 103 (6) 1383-1389
  • 105 Bader T, Hughes LD, Fazili J , et al. A randomized controlled trial adding fluvastatin to peginterferon and ribavirin for naïve genotype 1 hepatitis C patients. J Viral Hepat 2013; 20 (9) 622-627
  • 106 Zhu Q, Li N, Han Q , et al. Statin therapy improves response to interferon alfa and ribavirin in chronic hepatitis C: a systematic review and meta-analysis. Antiviral Res 2013; 98 (3) 373-379