Facial Plast Surg 2014; 30(01): 040-048
DOI: 10.1055/s-0033-1363762
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Histologic Effects of Resurfacing Lasers

Joshua R. Freedman
1   Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida
,
Ryan M. Greene
2   Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology–Head and Neck Surgery, University of Miami, Miami, Florida
3   GreeneMD Plastic Surgery and Laser Center, Weston, Florida
,
Jeremy B. Green
1   Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida
4   Dr. Brandt Dermatology Associates, Coral Gables, Florida
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
31. Januar 2014 (online)

Abstract

By utilizing resurfacing lasers, physicians can significantly improve the appearance of sun-damaged skin, scars, and more. The carbon dioxide and erbium:yttrium-aluminum-garnet lasers were the first ablative resurfacing lasers to offer impressive results although these earlier treatments were associated with significant downtime. Later, nonablative resurfacing lasers such as the neodymium:yttrium-aluminum-garnet laser proved effective, after a series of treatments with less downtime, but with more modest results. The theory of fractional photothermolysis has revolutionized resurfacing laser technology by increasing the safety profile of the devices while delivering clinical efficacy. A review of the histologic and molecular consequences of the resurfacing laser–tissue interaction allows for a better understanding of the devices and their clinical effects.

 
  • References

  • 1 Stanulis-Praeger BM, Gilchrest BA. Growth factor responsiveness declines during adulthood for human skin-derived cells. Mech Ageing Dev 1986; 35 (2) 185-198
  • 2 Shuster S, Black MM, McVitie E. The influence of age and sex on skin thickness, skin collagen and density. Br J Dermatol 1975; 93 (6) 639-643
  • 3 Craven NM, Watson RE, Jones CJ, Shuttleworth CA, Kielty CM, Griffiths CE. Clinical features of photodamaged human skin are associated with a reduction in collagen VII. Br J Dermatol 1997; 137 (3) 344-350
  • 4 Varani J, Dame MK, Rittie L , et al. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 2006; 168 (6) 1861-1868
  • 5 Nelson BR, Metz RD, Majmudar G , et al. A comparison of wire brush and diamond fraise superficial dermabrasion for photoaged skin. A clinical, immunohistologic, and biochemical study. J Am Acad Dermatol 1996; 34 (2 Pt 1) 235-243
  • 6 Alster TS, Lupton JR. Prevention and treatment of side effects and complications of cutaneous laser resurfacing. Plast Reconstr Surg 2002; 109 (1) 308-316 , discussion 317–318
  • 7 Nanni CA, Alster TS. Complications of carbon dioxide laser resurfacing. An evaluation of 500 patients. Dermatol Surg 1998; 24 (3) 315-320
  • 8 Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 1983; 220 (4596) 524-527
  • 9 Walsh Jr JT, Deutsch TF. Pulsed CO2 laser tissue ablation: measurement of the ablation rate. Lasers Surg Med 1988; 8 (3) 264-275
  • 10 Ross EV, Grossman MC, Duke D, Grevelink JM. Long-term results after CO2 laser skin resurfacing: a comparison of scanned and pulsed systems. J Am Acad Dermatol 1997; 37 (5 Pt 1): 709-718
  • 11 Stegman SJ. A study of dermabrasion and chemical peels in an animal model. J Dermatol Surg Oncol 1980; 6 (6) 490-497
  • 12 Orringer JS, Kang S, Johnson TM , et al. Connective tissue remodeling induced by carbon dioxide laser resurfacing of photodamaged human skin. Arch Dermatol 2004; 140 (11) 1326-1332
  • 13 Walsh Jr JT, Flotte TJ, Deutsch TF. Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage. Lasers Surg Med 1989; 9 (4) 314-326
  • 14 Miller L. The erbium laser gains a role in cosmetic surgery. Biophoton Int 1997; 38-42
  • 15 Tay YK, Kwok C. Minimally ablative erbium:YAG laser resurfacing of facial atrophic acne scars in Asian skin: a pilot study. Dermatol Surg 2008; 34 (5) 681-685
  • 16 Kunzi-Rapp K, Dierickx CC, Cambier B, Drosner M. Minimally invasive skin rejuvenation with Erbium: YAG laser used in thermal mode. Lasers Surg Med 2006; 38 (10) 899-907
  • 17 Orringer JS, Rittié L, Hamilton T, Karimipour DJ, Voorhees JJ, Fisher GJ. Intraepidermal erbium:YAG laser resurfacing: impact on the dermal matrix. J Am Acad Dermatol 2011; 64 (1) 119-128
  • 18 Kaufmann R, Hartmann A, Hibst R. Cutting and skin-ablative properties of pulsed mid-infrared laser surgery. J Dermatol Surg Oncol 1994; 20 (2) 112-118
  • 19 Ross EV, Swann M, Soon S, Izadpanah A, Barnette D, Davenport S. Full-face treatments with the 2790-nm erbium:YSGG laser system. J Drugs Dermatol 2009; 8 (3) 248-252
  • 20 Khan MH, Sink RK, Manstein D, Eimerl D, Anderson RR. Intradermally focused infrared laser pulses: thermal effects at defined tissue depths. Lasers Surg Med 2005; 36 (4) 270-280
  • 21 Manstein D, Herron GS, Sink RK, Tanner H, Anderson RR. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med 2004; 34 (5) 426-438
  • 22 Hantash BM, Bedi VP, Chan KF, Zachary CB. Ex vivo histological characterization of a novel ablative fractional resurfacing device. Lasers Surg Med 2007; 39 (2) 87-95
  • 23 Hantash BM, Bedi VP, Kapadia B , et al. In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg Med 2007; 39 (2) 96-107
  • 24 Keagle JN, Welch WJ, Young DM. Expression of heat shock proteins in a linear rodent wound. Wound Repair Regen 2001; 9 (5) 378-385
  • 25 Trelles MA, Shohat M, Urdiales F. Safe and effective one-session fractional skin resurfacing using a carbon dioxide laser device in super-pulse mode: a clinical and histologic study. Aesthetic Plast Surg 2011; 35 (1) 31-42
  • 26 Brightman LA, Brauer JA, Anolik R , et al. Ablative and fractional ablative lasers. Dermatol Clin 2009; 27 (4) 479-489 , vi–vii
  • 27 Reilly MJ, Cohen M, Hokugo A, Keller GS. Molecular effects of fractional carbon dioxide laser resurfacing on photodamaged human skin. Arch Facial Plast Surg 2010; 12 (5) 321-325
  • 28 Trelles MA, Mordon S, Velez M, Urdiales F, Levy JL. Results of fractional ablative facial skin resurfacing with the erbium:yttrium-aluminium-garnet laser 1 week and 2 months after one single treatment in 30 patients. Lasers Med Sci 2009; 24 (2) 186-194
  • 29 Alam M, Dover JS, Arndt KA. Energy delivery devices for cutaneous remodeling: lasers, lights, and radio waves. Arch Dermatol 2003; 139 (10) 1351-1360
  • 30 Brightman L, Goldman MP, Taub AF. Sublative rejuvenation: experience with a new fractional radiofrequency system for skin rejuvenation and repair. J Drugs Dermatol 2009; 8 (11, Suppl) s9-s13
  • 31 Alster TS, Konda S. Plasma skin resurfacing for regeneration of neck, chest, and hands: investigation of a novel device. Dermatol Surg 2007; 33 (11) 1315-1321
  • 32 Fitzpatrick R, Bernstein E, Iyer S, Brown D, Andrews P, Penny K. A histopathologic evaluation of the Plasma Skin Regeneration System (PSR) versus a standard carbon dioxide resurfacing laser in an animal model. Lasers Surg Med 2008; 40 (2) 93-99
  • 33 Berlin AL, Dudelzak J, Hussain M, Phelps R, Goldberg DJ. Evaluation of clinical, microscopic, and ultrastructural changes after treatment with a novel Q-switched Nd:YAG laser. J Cosmet Laser Ther 2008; 10 (2) 76-79
  • 34 Ross EV, Zelickson BD. Biophysics of nonablative dermal remodeling. Semin Cutan Med Surg 2002; 21 (4) 251-265
  • 35 Varani J, Spearman D, Perone P , et al. Inhibition of type I procollagen synthesis by damaged collagen in photoaged skin and by collagenase-degraded collagen in vitro. Am J Pathol 2001; 158 (3) 931-942
  • 36 Fisher GJ, Datta S, Wang Z , et al. c-Jun-dependent inhibition of cutaneous procollagen transcription following ultraviolet irradiation is reversed by all-trans retinoic acid. J Clin Invest 2000; 106 (5) 663-670
  • 37 Fisher GJ, Datta SC, Talwar HS , et al. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 1996; 379 (6563) 335-339
  • 38 Fisher GJ, Voorhees JJ. Molecular mechanisms of photoaging and its prevention by retinoic acid: ultraviolet irradiation induces MAP kinase signal transduction cascades that induce Ap-1-regulated matrix metalloproteinases that degrade human skin in vivo. J Investig Dermatol Symp Proc 1998; 3 (1) 61-68
  • 39 Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ. Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 1997; 337 (20) 1419-1428
  • 40 Goldberg DJ. Full-face nonablative dermal remodeling with a 1320 nm Nd:YAG laser. Dermatol Surg 2000; 26 (10) 915-918
  • 41 Fatemi A, Weiss MA, Weiss RA. Short-term histologic effects of nonablative resurfacing: results with a dynamically cooled millisecond-domain 1320 nm Nd:YAG laser. Dermatol Surg 2002; 28 (2) 172-176
  • 42 Menaker GM, Wrone DA, Williams RM, Moy RL. Treatment of facial rhytids with a nonablative laser: a clinical and histologic study. Dermatol Surg 1999; 25 (6) 440-444
  • 43 Rogachefsky AS, Hussain M, Goldberg DJ. Atrophic and a mixed pattern of acne scars improved with a 1320-nm Nd:YAG laser. Dermatol Surg 2003; 29 (9) 904-908
  • 44 El-Domyati M, El-Ammawi TS, Medhat W, Moawad O, Mahoney MG, Uitto J. Effects of the Nd:YAG 1320-nm laser on skin rejuvenation: clinical and histological correlations. J Cosmet Laser Ther 2011; 13 (3) 98-106
  • 45 Tanzi EL, Alster TS. Comparison of a 1450-nm diode laser and a 1320-nm Nd:YAG laser in the treatment of atrophic facial scars: a prospective clinical and histologic study. Dermatol Surg 2004; 30 (2 Pt 1) 152-157
  • 46 Orringer JS, Voorhees JJ, Hamilton T , et al. Dermal matrix remodeling after nonablative laser therapy. J Am Acad Dermatol 2005; 53 (5) 775-782
  • 47 Goldberg DJ, Whitworth J. Laser skin resurfacing with the Q-switched Nd:YAG laser. Dermatol Surg 1997; 23 (10) 903-906 , discussion 906–907
  • 48 Goldberg DJ, Silapunt S. Histologic evaluation of a Q-switched Nd:YAG laser in the nonablative treatment of wrinkles. Dermatol Surg 2001; 27 (8) 744-746
  • 49 Dayan S, Damrose JF, Bhattacharyya TK , et al. Histological evaluations following 1,064-nm Nd:YAG laser resurfacing. Lasers Surg Med 2003; 33 (2) 126-131
  • 50 Schmults CD, Phelps R, Goldberg DJ. Nonablative facial remodeling: erythema reduction and histologic evidence of new collagen formation using a 300-microsecond 1064-nm Nd:YAG laser. Arch Dermatol 2004; 140 (11) 1373-1376
  • 51 Lee YB, Kang NH, Eun YS , et al. Effects of long-pulsed 1,064-nm neodymium-doped yttrium aluminum garnet laser on dermal collagen remodeling in hairless mice. Dermatol Surg 2012; 38 (7 Pt 1) 985-992
  • 52 Laubach HJ, Tannous Z, Anderson RR, Manstein D. Skin responses to fractional photothermolysis. Lasers Surg Med 2006; 38 (2) 142-149
  • 53 Walgrave SE, Kist DA, Noyaner-Turley A, Zelickson BD. Minimally ablative resurfacing with the confluent 2,790 nm erbium:YSGG laser: a pilot study on safety and efficacy. Lasers Surg Med 2012; 44 (2) 103-111
  • 54 Orringer JS, Rittié L, Baker D, Voorhees JJ, Fisher G. Molecular mechanisms of nonablative fractionated laser resurfacing. Br J Dermatol 2010; 163 (4) 757-768
  • 55 Maytin EV. Heat shock proteins and molecular chaperones: implications for adaptive responses in the skin. J Invest Dermatol 1995; 104 (4) 448-455
  • 56 Dainichi T, Ueda S, Fumimori T, Kiryu H, Hashimoto T. Skin tightening effect using fractional laser treatment II: A pilot animal study on skin remodeling. Dermatol Surg 2010; 36 (1) 71-75
  • 57 Thongsima S, Zurakowski D, Manstein D. Histological comparison of two different fractional photothermolysis devices operating at 1,550 nm. Lasers Surg Med 2010; 42 (1) 32-37